cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278158 Least number with the prime signature of the n-th Fibocyclotomic number, with a(6) = 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 12, 2, 6, 1, 6, 2, 24, 4, 2, 6, 60, 6, 60, 6, 6, 6, 6, 12, 6, 24, 210, 24, 30, 4, 420, 30, 30, 30, 20160, 24, 9240, 420, 12, 30, 60060, 30, 420, 30, 240, 30, 420, 210, 27720, 30, 60, 720, 420, 420, 6, 720, 2310, 30, 210, 30, 2042040, 4620, 24, 210, 7680, 60, 60060, 210, 6, 30240, 510510, 2160, 6486480, 840, 2310, 9240, 9240, 420, 60060, 210
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    ps[n_] := Sort[Last /@ FactorInteger[n]]; g[n_] := Module[{cy = CoefficientList[ Cyclotomic[n, x], x]}, Total[Times @@@ Thread[{Fibonacci[Range[0, Length[cy] - 1]], cy}]]]; f[n_] := Block[{c = ps[g[n]]}, lng = Length@ c; Times @@ (Reverse[ Prime[ Range[ lng]]]^c)]; f[6] = 0; f[1] = f[2] = f[4] = f[10] = 1; Array[f, 70] (* Robert G. Wilson v, Nov 19 2016 *)
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[
    Total[Times @@@ Thread[{Fibonacci[Range[0, Length@ # - 1]], #}]] &@ CoefficientList[Cyclotomic[n, x], x] + Boole[n == 0]], {n, 120}] (* Michael De Vlieger, Nov 21 2016, after Harvey P. Dale at A051258 *)
  • PARI
    A051258(n) = my(P=polcyclo(n)); sum(i=1, poldegree(P), polcoeff(P, i)*fibonacci(i)); \\ From Charles R Greathouse IV, Jan 05 2013
    A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From Charles R Greathouse IV, Aug 17 2011
    A278158(n) = if(6==n,0,A046523(A051258(n)));
    for(n=1, 550, write("b278158.txt", n, " ", A278158(n)));
    
  • Scheme
    (define (A278158 n) (let ((k (A051258 n))) (if (zero? k) k (A046523 k))))

Formula

a(n) = A046523(A051258(n)), except for n=6, a(6) = 0.