cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 112 results. Next

A286622 Restricted growth sequence computed for filter-sequence A278222, related to 1-runs in the binary representation of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 5, 2, 4, 4, 6, 3, 6, 5, 7, 2, 4, 4, 6, 4, 8, 6, 9, 3, 6, 6, 10, 5, 9, 7, 11, 2, 4, 4, 6, 4, 8, 6, 9, 4, 8, 8, 12, 6, 12, 9, 13, 3, 6, 6, 10, 6, 12, 10, 14, 5, 9, 9, 14, 7, 13, 11, 15, 2, 4, 4, 6, 4, 8, 6, 9, 4, 8, 8, 12, 6, 12, 9, 13, 4, 8, 8, 12, 8, 16, 12, 17, 6, 12, 12, 18, 9, 17, 13, 19, 3, 6, 6, 10, 6, 12, 10, 14, 6, 12, 12, 18, 10, 18
Offset: 0

Views

Author

Antti Karttunen, May 11 2017

Keywords

Comments

When filtering sequences (by equivalence class partitioning), this sequence can be used instead of A278222, because for all i, j it holds that: a(i) = a(j) <=> A278222(i) = A278222(j).
For example, for all i, j: a(i) = a(j) => A000120(i) = A000120(j), and for all i, j: a(i) = a(j) => A001316(i) = A001316(j).
The sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of n. See the examples. - Antti Karttunen, Jun 04 2017

Examples

			For n = 0, there are no 1-runs, thus the multiset is empty [], and it is allotted the number 1, thus a(0) = 1.
For n = 1, in binary also "1", there is one 1-run of length 1, thus the multiset is [1], which has not been encountered before, and a new number is allotted for that, thus a(1) = 2.
For n = 2, in binary "10", there is one 1-run of length 1, thus the multiset is [1], which was already encountered at n=1, thus a(2) = a(1) = 2.
For n = 3, in binary "11", there is one 1-run of length 2, thus the multiset is [2], which has not been encountered before, and a new number is allotted for that, thus a(3) = 3.
For n = 4, in binary "100", there is one 1-run of length 1, thus the multiset is [1], which was already encountered at n=1 for the first time, thus a(4) = a(1) = 2.
For n = 5, in binary "101", there are two 1-runs, both of length 1, thus the multiset is [1,1], which has not been encountered before, and a new number is allotted for that, thus a(5) = 4.
		

Crossrefs

Cf. A286552 (ordinal transform).
Cf. also A101296, A286581, A286589, A286597, A286599, A286600, A286602, A286603, A286605, A286610, A286619, A286621, A286626, A286378, A304101 for similarly constructed or related sequences.
Cf. also A305793, A305795.

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    v286622 = rgs_transform(vector(1+65537, n, A278222(n-1)));
    A286622(n) = v286622[1+n];

Extensions

Example section added by Antti Karttunen, Jun 04 2017

A292583 Restricted growth sequence transform of A278222(A292383(n)); a filter related to runs of numbers of the form 4k+3 encountered on trajectories of A005940-tree.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 4, 2, 4, 3, 3, 1, 4, 1, 5, 2, 2, 4, 6, 2, 1, 4, 2, 3, 6, 3, 7, 1, 3, 4, 4, 1, 7, 5, 5, 2, 7, 2, 8, 4, 2, 6, 9, 2, 1, 1, 5, 4, 9, 2, 3, 3, 4, 6, 10, 3, 10, 7, 3, 1, 3, 3, 11, 4, 5, 4, 12, 1, 12, 7, 2, 5, 4, 5, 13, 2, 1, 7, 14, 2, 5, 8, 7, 4, 14, 2, 4, 6, 6, 9, 6, 2, 14, 1, 15, 1, 14, 5, 16, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 20 2017

Keywords

Comments

Term a(n) essentially records the run lengths of numbers of form 4k+3 encountered when starting from that node in binary tree A005940 which contains n, and by then traversing towards the root by iterating the map n -> A252463(n). The actual run lengths can be read from the exponents of primes in the prime factorization of A278222(A292383(m)), where m = min_{k=1..n} for which a(k) = a(n). In compound filter A292584 this is combined with similar information about the run lengths of the numbers of the form 4k+1 (A292585).
From Antti Karttunen, Sep 25 2017: (Start)
For all i, j: a(i) = a(j) => A053866(i) = A053866(j).
This follows from the interpretation of A053866 (A093709) as the characteristic function of squares and twice-squares. In binary tree A005940 each number is "born" by repeated applications of two functions: when we descend leftward we apply A003961, which shifts all prime factors of n one step towards larger primes. On the other hand, when we descend rightward the terms grow by doubling: n -> 2n (A005843). No square is ever of the form 4k+3, and for any square x, A003961(x) is also a square. Multiplying a square by 2 gives twice a square, and then multiplying by 2 again gives 4*square, which is also a square. In general, applying an even number of doubling steps in succession keeps a square as a square, while an odd number of doubling steps gives twice a square. Applying A003961 to any 2*square gives 3*(some square) which is always of the form 4k+3. Moreover, after any such "wrong turn" in A005940-tree no square nor twice a square can ever be encountered under any of the further descendants, because with this process it is impossible to find a pair for the lone prime factor now present. On the other hand, when turning left from any (2^2k)*s (where s is a square), one again gets a square of the form (3^2k)*A003961(s). All this implies that there are no numbers of the form 4k+3 in any trajectory leading to a square or twice a square in A005940-tree, while all trajectories to any other kind of number contain at least one number of the form 4k+3. Because each a(n) in this sequence contains enough information to count the 4k+3 numbers encountered on a A005940-trajectory to n (being 1 iff there are none), this filter matches A053866.
(End)

Examples

			When traversing from the root of binary tree A005940 from the node containing 7, one obtains path 7 -> 5 -> 3 -> 2 -> 1. Of these numbers, 7 and 3 are of the form 4k+3, while others are not, thus there are two separate runs of length 1: [1, 1]. On the other hand, when traversing from 15 as 15 -> 6 -> 3 -> 2 -> 1, again only two terms are of the form 4k+3: 15 and 3 and they are not next to each other, so we have the same two runs of one each: [1, 1], thus a(7) and a(15) are allotted the same value by the restricted growth sequence transform, which in this case is 3. Note that 3 occurs in this sequence for the first time at n=7, with A292383(7) = 5 and A278222(5) = 6 = 2^1 * 3^1, where those run lengths 1 and 1 are the prime exponents of 6.
		

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A278222(n) = A046523(A005940(1+n));
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A292383(n) = if(1==n,0,(if(3==(n%4),1,0)+(2*A292383(A252463(n)))));
    write_to_bfile(1,rgs_transform(vector(16384,n,A278222(A292383(n)))),"b292583_upto16384.txt");

A286162 Compound filter: a(n) = T(A001511(n), A278222(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 7, 9, 16, 12, 29, 14, 16, 23, 67, 18, 67, 38, 121, 20, 16, 23, 67, 31, 436, 80, 277, 25, 67, 80, 631, 48, 277, 138, 497, 27, 16, 23, 67, 31, 436, 80, 277, 40, 436, 467, 1771, 94, 1771, 302, 1129, 33, 67, 80, 631, 94, 1771, 668, 2557, 59, 277, 302, 2557, 156, 1129, 530, 2017, 35, 16, 23, 67, 31, 436, 80, 277, 40, 436, 467, 1771, 94, 1771, 302, 1129, 50
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • PARI
    A001511(n) = (1+valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A286162(n) = (2 + ((A001511(n)+A278222(n))^2) - A001511(n) - 3*A278222(n))/2;
    for(n=1, 10000, write("b286162.txt", n, " ", A286162(n)));
    
  • Python
    from sympy import prime, factorint
    import math
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a278222(n): return a046523(a005940(n + 1))
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a(n): return T(a001511(n), a278222(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286162 n) (* (/ 1 2) (+ (expt (+ (A001511 n) (A278222 n)) 2) (- (A001511 n)) (- (* 3 (A278222 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A001511(n)+A278222(n))^2) - A001511(n) - 3*A278222(n)).

A286163 Compound filter: a(n) = T(A046523(n), A278222(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 12, 14, 23, 42, 38, 44, 40, 61, 80, 117, 80, 84, 216, 152, 23, 148, 80, 148, 601, 142, 302, 375, 109, 142, 911, 183, 302, 1020, 530, 560, 61, 61, 142, 856, 467, 142, 412, 430, 467, 1741, 1832, 265, 2497, 412, 1178, 1323, 109, 265, 826, 265, 1832, 1735, 2932, 489, 412, 412, 2630, 2835, 1178, 672, 2787, 2144, 61, 625, 80, 148, 601, 850, 302, 2998, 467, 601
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A286163(n) = (2 + ((A046523(n)+A278222(n))^2) - A046523(n) - 3*A278222(n))/2;
    for(n=1, 10000, write("b286163.txt", n, " ", A286163(n)));
    
  • Python
    from sympy import prime, factorint
    import math
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a278222(n): return a046523(a005940(n + 1))
    def a(n): return T(a046523(n), a278222(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286163 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A278222 n)) 2) (- (A046523 n)) (- (* 3 (A278222 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A278222(n))^2) - A046523(n) - 3*A278222(n)).

A304101 Restricted growth sequence transform of A278222(A048679(n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 4, 3, 2, 4, 4, 3, 5, 2, 4, 4, 4, 6, 3, 6, 5, 2, 4, 4, 4, 6, 4, 7, 6, 3, 6, 6, 5, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 3, 6, 6, 6, 10, 5, 9, 8, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7, 11, 6, 11, 9, 3, 6, 6, 6, 10, 6, 11, 10, 5, 9, 9, 8, 12, 2, 4, 4, 4, 6, 4, 7, 6, 4, 7, 7, 6, 9, 4, 7, 7, 7
Offset: 0

Views

Author

Antti Karttunen, May 13 2018

Keywords

Comments

Positions of 2's is given by the positive Fibonacci numbers: 1, 2, 3, 5, 8, 13, 21, ..., that is, A000045(n) from n >= 2 onward.
Positions of 3's is given by Lucas numbers larger than 3: 4, 7, 11, 18, ..., that is, A000032(n) from n >= 3 onward.
Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A048679(n). Compare to the scatter plot of A286622.

Crossrefs

Cf. also A286622 (compare the scatter-plots).

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
    A106151(n) = if(n<=1, n, if(n%2, 1+(2*A106151((n-1)/2)), A106151(n>>valuation(n, 2))<<(valuation(n, 2)-1)));
    A048679(n) = if(!n,n,A106151(2*A003714(n)));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v304101 = rgs_transform(vector(1+up_to, n, A278222(A048679(n-1))));
    A304101(n) = v304101[1+n];

A286243 Filter-sequence: a(n) = A278222(A064216(n)).

Original entry on oeis.org

2, 2, 4, 6, 2, 8, 12, 4, 12, 6, 6, 12, 6, 2, 24, 24, 8, 16, 32, 12, 30, 30, 4, 60, 12, 12, 48, 30, 6, 60, 72, 6, 6, 48, 12, 12, 24, 6, 12, 30, 2, 48, 24, 24, 60, 72, 24, 36, 60, 8, 12, 60, 16, 72, 180, 32, 180, 24, 12, 6, 12, 30, 36, 24, 30, 128, 210, 4, 12, 30, 60, 60, 30, 12, 60, 210, 12, 120, 120, 48, 96, 120, 30, 60, 48, 6, 120, 60, 60, 420, 180, 72, 120
Offset: 1

Views

Author

Antti Karttunen, May 07 2017

Keywords

Crossrefs

Cf. A254044 (one of the matching sequences).

Programs

Formula

a(n) = A278222(A064216(n)).

A336159 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 3, 5, 6, 3, 8, 6, 9, 2, 10, 6, 11, 4, 9, 7, 12, 1, 13, 3, 14, 5, 15, 6, 16, 3, 15, 8, 17, 6, 18, 9, 19, 2, 10, 10, 20, 6, 17, 11, 21, 4, 16, 9, 22, 7, 19, 12, 23, 1, 13, 13, 6, 3, 8, 14, 9, 5, 15, 15, 18, 6, 24, 16, 19, 3, 25, 15, 17, 8, 26, 17, 27, 6, 17, 18, 28, 9, 27, 19, 29, 2, 6, 10, 30, 10, 17, 20, 22, 6, 31
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A336158(n)], i.e., of the ordered pair [A046523(A005940(1+n)), A046523(A000265(n))].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A336158(n) = A046523(A000265(n));
    Aux336159(n) = [A278222(n), A336158(n)];
    v336159 = rgs_transform(vector(up_to, n, Aux336159(n)));
    A336159(n) = v336159[n];

A304535 Restricted growth sequence transform of A278222(A304533(n)).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 4, 2, 4, 5, 2, 4, 6, 4, 7, 3, 6, 4, 8, 4, 7, 9, 6, 10, 4, 6, 8, 5, 11, 6, 8, 2, 4, 6, 4, 6, 4, 5, 4, 5, 8, 2, 4, 6, 4, 6, 4, 6, 3, 6, 11, 3, 6, 12, 6, 9, 7, 9, 7, 10, 5, 11, 13, 11, 14, 6, 12, 15, 11, 13, 12, 16, 4, 5, 8, 5, 8, 5, 8, 6, 17, 5, 18, 5, 11, 19, 18, 20, 11, 19, 5, 8, 16, 8, 17, 2, 4, 5, 4, 5, 4, 5, 4, 5, 18, 4
Offset: 0

Views

Author

Antti Karttunen, May 15 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A304536(i) = A304536(j).

Crossrefs

A324343 Lexicographically earliest positive sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A324342(i) = A324342(j), for all i, j >= 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 5, 6, 2, 4, 7, 8, 9, 10, 11, 12, 2, 4, 7, 13, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2, 4, 7, 13, 25, 14, 18, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 2, 4, 7, 13, 50, 51, 52, 53, 50, 54, 55, 56, 38, 39, 57, 58, 59, 60, 55, 56, 61, 62, 63, 64, 19, 65, 66, 67, 16, 68, 69, 70, 71, 72, 73, 74, 75, 63, 76
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A324342(n)], or equally, of [A286622(n), A324342(n)].
For all i, j: a(i) = a(j) => A324344(i) = A324344(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002110(n) = prod(i=1,n,prime(i));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A030308(n,k) = bittest(n,k);
    A283477(n) = prod(i=0,#binary(n),if(0==A030308(n,i),1,A030308(n,i)*A002110(1+i)));
    A276150(n) = { my(s=0,m); forprime(p=2, , if(!n, return(s)); m = n%p; s += m; n = (n-m)/p); };
    A324342(n) = A276150(A283477(n));
    A324343aux(n) = [A278222(n), A324342(n)];
    v324343 = rgs_transform(vector(1+up_to,n,A324343aux(n-1)));
    A324343(n) = v324343[1+n];

A290091 Filter based on 1-digits of base-3 expansion: a(n) = A278222(A289813(n)).

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 6, 2, 4, 8, 4, 2, 6, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 6, 2, 6, 12, 6, 2, 6, 2, 4, 12, 4, 8, 16, 8, 4, 12, 4, 2, 6, 2, 6, 12, 6, 2, 6, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 6, 2, 4, 8, 4, 2, 6, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 6, 2, 6, 12, 6, 2, 6, 2, 6, 30, 6, 12, 24, 12, 6, 30, 6, 2, 6, 2, 6, 12, 6, 2
Offset: 0

Views

Author

Antti Karttunen, Jul 25 2017

Keywords

Crossrefs

Programs

Showing 1-10 of 112 results. Next