A278310 Numbers m such that T(m) + 3*T(m+1) is a square, where T = A000217.
3, 143, 4899, 166463, 5654883, 192099599, 6525731523, 221682772223, 7530688524099, 255821727047183, 8690408031080163, 295218051329678399, 10028723337177985443, 340681375412721826703, 11573138040695364122499, 393146012008229658338303, 13355391270239113019379843
Offset: 1
Examples
3 is in the sequence because T(3) + 3*T(4) = 6 + 3*10 = 6^2. For n=5 is a(5) = 5654883, therefore floor(sqrt(5654883)) = 2377 = A182189(5) - 2 = 2379 - 2.
Links
- Colin Barker, Table of n, a(n) for n = 1..650
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
Magma
Iv:=[3,143]; [n le 2 select Iv[n] else 34*Self(n-1)-Self(n-2)+40: n in [1..20]];
-
Maple
P:=proc(q) local n; for n from 3 to q do if type(sqrt(2*n^2+5*n+3),integer) then print(n); fi; od; end: P(10^9); # Paolo P. Lava, Nov 18 2016
-
Mathematica
Table[((1 + Sqrt[2])^(4 n) + (1 - Sqrt[2])^(4 n))/8 - 5/4, {n, 1, 20}] RecurrenceTable[{a[1] == 3, a[2] == 143, a[n] == 34 a[n - 1] - a[n - 2] + 40}, a, {n, 1, 20}] LinearRecurrence[{35, -35, 1}, {3, 143, 4899}, 50] (* G. C. Greubel, Nov 20 2016 *)
-
PARI
Vec(x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)) + O(x^50)) \\ G. C. Greubel, Nov 20 2016
-
Sage
def A278310(): a, b = 3, 143 yield a while True: yield b a, b = b, 34*b - a + 40 a = A278310(); print([next(a) for in range(18)]) # _Peter Luschny, Nov 18 2016
Formula
O.g.f.: x*(3 + 38*x - x^2)/((1 - x)*(1 - 34*x + x^2)).
E.g.f.: (exp((1-sqrt(2))^4*x) + exp((1+sqrt(2))^4*x) - 10*exp(x))/8 + 1.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
a(n) = 34*a(n-1) - a(n-2) + 40 for n>2.
a(n) = a(-n) = ((1 + sqrt(2))^(4*n) + (1 - sqrt(2))^(4*n))/8 - 5/4.
a(n) = 4*A001109(n)^2 - 1.
Lim_{n -> infinity} a(n)/a(n-1) = A156164.
Floor(sqrt(a(n))) = A182189(n) - 2.
a(n) - a(n-1) = 4*A046176(n) for n>1.
Comments