A278311 Numbers n such that n-1 and n+1 have the same number of prime factors as n (with multiplicity).
34, 86, 94, 122, 142, 171, 202, 214, 218, 245, 285, 302, 394, 429, 435, 446, 507, 603, 604, 605, 634, 638, 698, 842, 922, 963, 1042, 1075, 1084, 1085, 1131, 1138, 1245, 1262, 1275, 1310, 1346, 1402, 1413, 1431, 1435, 1449, 1491, 1533, 1557, 1587, 1605, 1635, 1642, 1676, 1762, 1772, 1838, 1886, 1894, 1925, 1942
Offset: 1
Keywords
Examples
a(1) = 34, as 33, 34, and 35 all have 2 prime factors. a(2) = 86, as 85, 86, and 87 all have 2 prime factors.
Links
- Ely Golden, Table of n, a(n) for n = 1..10000
Programs
-
Java
public class A278311{ public static void main(String[] args)throws Exception{ long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user long dim1=numberOfPrimeFactors(3); long dim2; long counter=4; long index=1; while(index<=10000){ dim2=numberOfPrimeFactors(counter); if(dim2==dim1&&dim1==dim0){System.out.println(index+" "+(counter-1));index++;} dim0=dim1; dim1=dim2; counter++; } } }
-
PARI
isok(n) = (bigomega(n-1) == bigomega(n)) && (bigomega(n) == bigomega(n+1)); \\ Michel Marcus, Nov 17 2016
-
SageMath
def bigomega(x): s=0; f=list(factor(x)); for c in range(len(f)): s+=f[c][1] return s; dim0=bigomega(2); dim1=bigomega(3); counter=4 index=1 while(index<=10000): dim2=bigomega(counter); if(dim2==dim1&dim1==dim0): print(str(index)+" "+str(counter-1)) index+=1; dim0=dim1; dim1=dim2; counter+=1;