A278340 Number of partitions of n*(n+1)/2 into distinct squares.
1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 3, 4, 3, 4, 4, 3, 4, 9, 14, 18, 19, 8, 16, 25, 27, 47, 37, 55, 83, 66, 92, 100, 108, 214, 189, 201, 303, 334, 535, 587, 587, 689, 764, 908, 1278, 1494, 1904, 2369, 2744, 2970, 3269, 3805, 4780, 6701, 7744, 9120, 10582, 11082
Offset: 0
Keywords
Examples
a(9) = 2: [25,16,4], [36,9]. a(10) = 1: [25,16,9,4,1]. a(11) = 3: [36,16,9,4,1], [36,25,4,1], [49,16,1]. a(12) = 4: [36,25,16,1], [49,16,9,4], [49,25,4], [64,9,4,1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i-1)))))(i*(i+1)*(2*i+1)/6) end: a:= n-> (m-> b(m, isqrt(m)))(n*(n+1)/2): seq(a(n), n=0..80);
-
Mathematica
b[n_, i_] := b[n, i] = (If[n > #, 0, If[n == #, 1, b[n, i - 1] + If[i^2 > n, 0, b[n - i^2, i - 1]]]]) &[i*(i + 1)*(2*i + 1)/6]; a[n_] := b[#, Floor @ Sqrt[#]] &[n*(n + 1)/2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2018, translated from Maple *)