cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278340 Number of partitions of n*(n+1)/2 into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 3, 4, 3, 4, 4, 3, 4, 9, 14, 18, 19, 8, 16, 25, 27, 47, 37, 55, 83, 66, 92, 100, 108, 214, 189, 201, 303, 334, 535, 587, 587, 689, 764, 908, 1278, 1494, 1904, 2369, 2744, 2970, 3269, 3805, 4780, 6701, 7744, 9120, 10582, 11082
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Examples

			a(9) = 2: [25,16,4], [36,9].
a(10) = 1: [25,16,9,4,1].
a(11) = 3: [36,16,9,4,1], [36,25,4,1], [49,16,1].
a(12) = 4: [36,25,16,1], [49,16,9,4], [49,25,4], [64,9,4,1]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
          `if`(n=m, 1, b(n, i-1)+ `if`(i^2>n, 0,
             b(n-i^2, i-1)))))(i*(i+1)*(2*i+1)/6)
        end:
    a:= n-> (m-> b(m, isqrt(m)))(n*(n+1)/2):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_] := b[n, i] = (If[n > #, 0, If[n == #, 1, b[n, i - 1] + If[i^2 > n, 0, b[n - i^2, i - 1]]]]) &[i*(i + 1)*(2*i + 1)/6];
    a[n_] := b[#, Floor @ Sqrt[#]] &[n*(n + 1)/2];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2018, translated from Maple *)

Formula

a(n) = [x^(n*(n+1)/2)] Product_{i>=1} (1+x^(i^2)).
a(n) = A033461(A000217(n)).