cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A278339 Number of set partitions of [n] into subsets whose element sums are distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 23, 9, 41, 248, 277, 1556, 2854, 5233, 20701, 145137, 1626890, 4118910, 9963276, 9260756, 64027363, 365237571, 1002679107, 21594036300, 24465529531, 144914973347, 1921444799766
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: 1.
a(4) = 1: 1|234.
a(6) = 1: 1|2356|4.
a(8) = 1: 12345678.
a(9) = 23: 12345678|9, 123568|4|79, 1236789|45, 1245789|36, 126|345789, 12589|367|4, 1258|3679|4, 12679|358|4, 1267|3589|4, 1345689|27, 135|246789, 13|24568|79, 13579|268|4, 1357|2689|4, 13678|259|4, 13|259|4678, 13|2689|457, 13|268|4579, 156789|234, 18|2345679, 169|23578|4, 1789|2356|4, 178|23569|4.
a(10) = 9: 1|2356|4|78(10)|9, 1|23578|4|6(10)|9, 1|258(10)|367|4|9, 1|258(10)|36|4|79, 1|259|36|4|78(10), 1|267(10)|358|4|9, 1|268|357(10)|4|9, 1|27|3589|4|6(10), 1|27|358|4|69(10).
		

Crossrefs

A299032 Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local i; if n=0 then
          `if`(t=0, 1, 0) elif t<1 then 0 else 0;
          for i while i^2<=n do %+b(n-i^2, t-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k^2))^n.

A299031 Number of ordered ways of writing n-th triangular number as a sum of n squares of nonnegative integers.

Original entry on oeis.org

1, 1, 0, 3, 18, 60, 252, 1576, 10494, 64152, 458400, 3407019, 27713928, 225193982, 1980444648, 17626414158, 165796077562, 1593587604441, 15985672426992, 163422639872978, 1729188245991060, 18743981599820280, 208963405365941380, 2378065667103672024, 27742569814633730608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(3) = 3 because third triangular number is 6 and we have [4, 1, 1], [1, 4, 1] and [1, 1, 4].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=0} x^(k^2))^n.

A319221 Number of ordered ways of writing n-th triangular number as a sum of n squares.

Original entry on oeis.org

1, 2, 0, 24, 144, 960, 4608, 74048, 859952, 9568800, 109975680, 1647979872, 23917274304, 358378620704, 5528847787008, 94307761212304, 1632598198916544, 29205907283227776, 538335591996965760, 10388234139989630128, 205386383159397554688, 4173254005731822569088
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n, {x, 0, n (n + 1)/2}], {n, 0, 21}]
    Join[{1}, Table[SquaresR[n, n (n + 1)/2], {n, 21}]]

Formula

a(n) = [x^(n*(n+1)/2)] theta_3(x)^n, where theta_3() is the Jacobi theta function.
a(n) = [x^(n*(n+1)/2)] (Sum_{k=-infinity..infinity} x^(k^2))^n.
Showing 1-4 of 4 results.