A278386 Decimal expansion of the excess of the exponential curve arc length over the length of the x-axis from -infinity to zero.
2, 2, 5, 9, 8, 7, 1, 5, 5, 9, 1, 3, 4, 9, 7, 3, 3, 2, 9, 8, 6, 3, 1, 1, 5, 2, 0, 6, 8, 8, 0, 8, 2, 3, 3, 7, 6, 1, 7, 0, 1, 1, 6, 8, 1, 4, 7, 5, 5, 6, 7, 9, 1, 6, 5, 4, 4, 0, 6, 4, 1, 3, 8, 8, 3, 0, 7, 4, 8, 9, 1, 6, 2, 0, 9, 7, 7, 5, 6, 6, 6, 6, 2, 2, 5, 4, 3, 9, 6, 9, 4, 1, 3, 8, 0, 4, 2, 1, 7, 4
Offset: 0
Examples
0.22598715591349733298631152068808233761701168147556791654406413883...
Links
- Jean-François Alcover, Involute of the exponential curve (left branch).
Crossrefs
Cf. A222362 (a similar constant).
Programs
-
Mathematica
RealDigits[Sqrt[2] - 1 + Log[2] - Log[1 + Sqrt[2]], 10, 100][[1]] RealDigits[Sqrt[2] - 1 - ArcSinh[7/(4 (5 + 3 Sqrt[2]))], 10, 100][[1]] (* Jan Mangaldan, Nov 22 2020 *)
-
PARI
sqrt(2) - 1 + log(2) - log(1 + sqrt(2)) \\ Michel Marcus, Nov 20 2016
Formula
Equals Integral_{-infinity..0} (sqrt(1 + exp(2x))-1) dx.
Equals sqrt(2) - 1 + log(2) - log(1 + sqrt(2)).
Equals sqrt(2) - 1 - arcsinh(7/(4*(5 + 3*sqrt(2)))). - Jan Mangaldan, Nov 23 2020
Equals sqrt(2) - 1 - arcsinh((5 - 3*sqrt(2))/4). - Vaclav Kotesovec, Nov 27 2020
Equals Integral_{x=0..1} (sqrt(x^2 + 1) - 1)/x dx. - Kritsada Moomuang, May 27 2025