cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278403 a(n) = Sum_{d|n} d^2 * (d+1)/2.

Original entry on oeis.org

1, 7, 19, 47, 76, 151, 197, 335, 424, 632, 727, 1127, 1184, 1673, 1894, 2511, 2602, 3634, 3611, 4872, 5066, 6299, 6349, 8615, 8201, 10316, 10630, 13081, 12616, 16526, 15377, 19407, 19258, 22838, 22322, 28586, 26012, 31775, 31622, 37960, 35302, 44594, 40679, 49899, 48874, 56081, 53017, 67239, 60222, 72507, 70246, 82012, 75844, 94030, 85502, 102745, 97850, 111860, 104431, 131502
Offset: 1

Views

Author

Paul D. Hanna, Nov 20 2016

Keywords

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 151*x^6/6 + 197*x^7/7 + 335*x^8/8 + 424*x^9/9 + 632*x^10/10 + 727*x^11/11 + 1127*x^12/12 +...
which equals the series
L(x) = x/(1-x)^3 + (x^2/2)/(1-x^2)^3 + (x^3/3)/(1-x^3)^3 + (x^4/4)/(1-x^4)^3 + (x^5/5)/(1-x^5)^3 + (x^6/6)/(1-x^6)^3 + (x^7/7)/(1-x^7)^3 +...
The exponentiation of the l.g.f. equals the infinite product
exp(L(x)) = 1/((1-x)*(1-x^2)^3*(1-x^3)^6*(1-x^4)^10*(1-x^5)^15*(1-x^6)^21*...);
explicitly,
exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 141*x^6 + 310*x^7 + 692*x^8 + 1483*x^9 + 3162*x^10 + 6583*x^11 + 13602*x^12 +...+ A000294(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[#^2*(#+1)/2&/@Divisors[n]],{n,60}] (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    {a(n) = sumdiv(n,d,d^2*(d+1)/2)}
    for(n=1,60,print1(a(n),", "))
    
  • PARI
    {a(n) = (sigma(n,3) + sigma(n,2))/2}
    for(n=1,60,print1(a(n),", "))
    
  • PARI
    {a(n) = n * polcoeff( sum(k=1,n, (x^k/k) / (1 - x^k +x*O(x^n))^3), n)}
    for(n=1,60,print1(a(n),", "))

Formula

Let the l.g.f. be L(x) = Sum_{n>=1} a(n)*x^n/n, then:
(1) exp( L(x) ) = Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2),
(2) L(x) = Sum_{n>=1} (x^n/n) / (1 - x^n)^3.
O.g.f.: Sum_{n>=1} n^2*(n+1)/2 * x^n / (1 - x^n).
a(n) = (sigma_3(n) + sigma_2(n))/2, where sigma_2(n) = A001157(n) and sigma_3(n) = A001158(n).
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 720. - Vaclav Kotesovec, Jul 13 2021
Dirichlet g.f.: zeta(s) * (zeta(s-3) + zeta(s-2)) / 2. - Amiram Eldar, Jan 02 2025