cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278457 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 2, 7, 11, 6, 30, 65, 59, 22, 143, 397, 492, 318, 90, 728, 2471, 3857, 3430, 1728, 394, 3876, 15572, 29255, 32728, 22886, 9461, 1806, 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558, 120175, 633765, 1591231, 2481597, 2622445, 1918665, 947740, 288812, 41586, 690690, 4078360, 11527318, 20467755, 25114375, 22043890, 13821764, 5964728, 1607198, 206098
Offset: 1

Views

Author

Gheorghe Coserea, Jan 15 2017

Keywords

Examples

			A(x;t) = x + (2*t+2)*x^2 + (7*t^2+11*t+6)*x^3 + (30*t^3+65*t^2+59*t+22)*x^4 + ...
Triangle starts:
n\k  [1]      [2]      [3]      [4]      [5]      [6]      [7]      [8]
[1]  1;
[2]  2,       2;
[3]  7,       11,      6;
[4]  30,      65,      59,      22;
[5]  143,     397,     492,     318,     90;
[6]  728,     2471,    3857,    3430,    1728,    394;
[7]  3876,    15572,   29255,   32728,   22886,   9461,    1806;
[8]  21318,   99009,   217323,  291456,  257001,  148626,  52133,   8558;
[9]  ...
		

Crossrefs

Column k=1 give A006013.

Programs

  • Mathematica
    Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[x ((t - 1) x^3 + (t^2 - 2t - 1) x^2 - (2t - 1) x + 1)/((1 - t) x^3 + (3 - t) x^2 + 3x + 1) + O[x]^11], x] // Flatten (* Jean-François Alcover, Sep 28 2019 *)
  • PARI
    N=11; x ='x + O('x^N);
    concat(apply(p->Vec(p), Vec(serreverse(Ser(x*((t-1)*x^3 + (t^2-2*t-1)*x^2 - (2*t-1)*x+1)/((1-t)*x^3 + (3-t)*x^2 + 3*x + 1), 'x)))))

Formula

y(x) = Sum {n>=1} P_n(t)*x^n satisfies x = y*((t-1)*y^3 + (t^2-2*t-1)*y^2 - (2*t-1)*y + 1)/((1-t)*y^3 + (3-t)*y^2 + 3*y + 1), with y(0)=0, y'(0)=1, where P_n(t) is the degree n-1 polynomial associated with row n of the triangle in order of decreasing powers of t.
P_n(0) = A006318(n-1), P_n(1) = A156017(n-1), P_n(2) = A231690(n).