A278457 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
1, 2, 2, 7, 11, 6, 30, 65, 59, 22, 143, 397, 492, 318, 90, 728, 2471, 3857, 3430, 1728, 394, 3876, 15572, 29255, 32728, 22886, 9461, 1806, 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558, 120175, 633765, 1591231, 2481597, 2622445, 1918665, 947740, 288812, 41586, 690690, 4078360, 11527318, 20467755, 25114375, 22043890, 13821764, 5964728, 1607198, 206098
Offset: 1
Examples
A(x;t) = x + (2*t+2)*x^2 + (7*t^2+11*t+6)*x^3 + (30*t^3+65*t^2+59*t+22)*x^4 + ... Triangle starts: n\k [1] [2] [3] [4] [5] [6] [7] [8] [1] 1; [2] 2, 2; [3] 7, 11, 6; [4] 30, 65, 59, 22; [5] 143, 397, 492, 318, 90; [6] 728, 2471, 3857, 3430, 1728, 394; [7] 3876, 15572, 29255, 32728, 22886, 9461, 1806; [8] 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558; [9] ...
Links
- Gheorghe Coserea, Rows n = 1..101, flattened
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
Crossrefs
Column k=1 give A006013.
Programs
-
Mathematica
Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[x ((t - 1) x^3 + (t^2 - 2t - 1) x^2 - (2t - 1) x + 1)/((1 - t) x^3 + (3 - t) x^2 + 3x + 1) + O[x]^11], x] // Flatten (* Jean-François Alcover, Sep 28 2019 *)
-
PARI
N=11; x ='x + O('x^N); concat(apply(p->Vec(p), Vec(serreverse(Ser(x*((t-1)*x^3 + (t^2-2*t-1)*x^2 - (2*t-1)*x+1)/((1-t)*x^3 + (3-t)*x^2 + 3*x + 1), 'x)))))
Formula
y(x) = Sum {n>=1} P_n(t)*x^n satisfies x = y*((t-1)*y^3 + (t^2-2*t-1)*y^2 - (2*t-1)*y + 1)/((1-t)*y^3 + (3-t)*y^2 + 3*y + 1), with y(0)=0, y'(0)=1, where P_n(t) is the degree n-1 polynomial associated with row n of the triangle in order of decreasing powers of t.