A278475 a(n) = floor(phi^7*a(n-1)) for n>0, a(0) = 1, where phi is the golden ratio (A001622).
1, 29, 841, 24417, 708933, 20583473, 597629649, 17351843293, 503801085145, 14627583312497, 424703717147557, 12331035380591649, 358024729754305377, 10395048198255447581, 301814422479162285225, 8763013300093961719105, 254429200125204052139269, 7387209816931011473757905
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (30,-28,-1).
Crossrefs
Programs
-
Mathematica
RecurrenceTable[{a[0] == 1, a[n] == Floor[GoldenRatio^7 a[n - 1]]}, a, {n, 17}] LinearRecurrence[{30, -28, -1}, {1, 29, 841}, 18]
-
PARI
Vec( (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)) + O(x^50) ) \\ G. C. Greubel, Nov 24 2016
Formula
G.f.: (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)).
a(n) = 30*a(n-1) - 28*a(n-2) - a(n-3).
a(n) = ((-29 - 13*sqrt(5))^(-n)*(-7*(407 + 182*sqrt(5))*2^(n+3) + 13*(1885 + 843*sqrt(5))*(-29 - 13*sqrt(5))^n + 28*(25319 + 11323*sqrt(5))*(-843 - 377*sqrt(5))^n))/(377*(1885 + 843*sqrt(5))).
Comments