cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278692 Pisot sequence T(4,14).

Original entry on oeis.org

4, 14, 49, 171, 596, 2077, 7238, 25223, 87897, 306303, 1067403, 3719680, 12962320, 45171020, 157411717, 548547468, 1911575138, 6661446313, 23213770727, 80895217952, 281903201529, 982374694626, 3423373822671, 11929753885009, 41572739387791, 144872448909191, 504850696923520, 1759300875378480
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)), A277084 (Pisot sequence L(4,14)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 27}]
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=4; v[2]=14; for(i=3,#v, v[i]=v[i-1]^2\v[i-2]); v \\ Charles R Greathouse IV, Nov 28 2016
    
  • Python
    from itertools import islice
    def A278692_gen(): # generator of terms
        a, b = 4, 14
        yield from (a,b)
        while True:
            a, b = b, b**2//a
            yield b
    A278692_list = list(islice(A278692_gen(),30)) # Chai Wah Wu, Dec 06 2023

Formula

a(n) = floor(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.
Conjectures: (Start)
G.f.: (4 - 2*x + x^2 - x^3)/(1 - 4*x + 2*x^2 - x^3 + x^4).
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4). (End)