cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278706 a(n) = a(n-1) + a(n-3) + a(n-5) - a(n-6), a(0) = a(1) = a(2) = 1, a(3) = 2, a(4) = 3, a(5) = 5.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 16, 24, 36, 54, 81, 123, 185, 278, 419, 631, 951, 1432, 2156, 3248, 4892, 7368, 11097, 16713, 25173, 37914, 57103, 86005, 129535, 195098, 293844, 442568, 666568, 1003942, 1512073, 2277387, 3430053, 5166126, 7780887, 11719071, 17650511
Offset: 0

Views

Author

Michael Somos, Nov 26 2016

Keywords

Comments

If the recursion of A276532 is used to define b(n) = (b(n-1) * b(n-6) + b(n-2) * b(n-3) * b(n-4) * b(n-5)) / b(n-7), with b(0), ..., b(6) variables, then the denominator of b(n) = Product_{k=0..6} b(k)^a(n-k-7) if n>=8.

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 16*x^8 + ...
		

Crossrefs

Cf. A276532.

Programs

  • Magma
    I:=[1,1,1,2,3,5]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-5)-Self(n-6): n in [1..45]]; // Vincenzo Librandi, Nov 27 2016
  • Mathematica
    LinearRecurrence[{1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 5}, 45] (* Vincenzo Librandi, Nov 27 2016 *)
  • PARI
    {a(n) = my(m=n, s=1); if( n<0, m=-6-n; s=-1); s * polcoeff( 1 / (1 - x - x^3 - x^5 + x^6) + x * O(x^m), m)};
    

Formula

G.f.: 1 / (1 - x - x^3 - x^5 + x^6).
0 = a(n) - a(n-1) - a(n-3) - a(n-5) + a(n-6) for all n in Z.
a(n) = - a(-6-n) for all n in Z.