cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278741 Odd numbers k such that tau(k-1) is a prime.

Original entry on oeis.org

3, 5, 17, 65, 1025, 4097, 65537, 262145, 4194305, 268435457, 1073741825, 68719476737, 1099511627777, 4398046511105, 70368744177665, 4503599627370497, 288230376151711745, 1152921504606846977, 73786976294838206465, 1180591620717411303425, 4722366482869645213697
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2016

Keywords

Comments

tau(k) = A000005(k) = the number of divisors of k.
Conjecture: prime terms are in A249759: 3, 5, 17, 65537, ...
Supersequence of A256438 and A249759. Subsequence of {A009087(n) + 1}.

Examples

			Odd number 65 is in the sequence because tau(64) = 7 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10000000] |  IsOdd(n) and IsPrime(NumberOfDivisors(n-1))];
    
  • PARI
    isok(n) = (n % 2) && isprime(numdiv(n-1)); \\ Michel Marcus, Nov 27 2016

Formula

a(n) = A061286(n) + 1.
sigma(a(n)-1) = A001348(n), i.e., Mersenne numbers.
tau(a(n)-1) = A000040(n), i.e., all primes; a(n) = the smallest odd number k such that tau(a(n)-1) = prime(n) = A000040(n).