cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278767 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 7, 22, 71, 206, 616, 1712, 4743, 12677, 33407, 86085, 218677, 546060, 1345840, 3271893, 7861239, 18670881, 43883904, 102112483, 235401947, 537869136, 1218743007, 2739566083, 6111766043, 13536683750, 29775945929, 65065819486, 141285315728, 304935221675, 654318376244, 1396166024244, 2963068779402
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the hexagonal numbers (A000384).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(2*d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).
a(n) ~ exp(-Zeta'(-1) - Zeta(3)/(2*Pi^2) - 75*Zeta(3)^3/(4*Pi^8) - 15^(5/4)*Zeta(3)^2/(2^(9/4)*Pi^5) * n^(1/4) - sqrt(15/2)*Zeta(3)/Pi^2 * sqrt(n) + 2^(9/4)*Pi/(3^(5/4)*5^(1/4)) * n^(3/4)) / (2^(67/48) * 15^(5/48) * Pi^(1/12) * n^(29/48)). - Vaclav Kotesovec, Dec 02 2016