A278843 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
Offset: 0
Keywords
Examples
From _Stefano Spezia_, Dec 08 2023: (Start) a(4) = 97432285: 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429; 42, 132, 429, 1430. (End)
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
-
PARI
C(n) = binomial(2*n, n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023
Formula
Det(M(n)) = n + 1 (see Mays and Wojciechowski, 2000). - Stefano Spezia, Dec 08 2023