A278868
Second series of Hankel determinants based on hyperfactorial/4.
Original entry on oeis.org
1, 1, 6183, 5772211367657472, 76148812142946816440318638031477145600000, 3940613226283843476344831941863494501303228636304800836707599745608602091520000000000
Offset: 0
-
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
(t-> mul(k^k, k=0..t)/4)(i+j))):
seq(a(n), n=0..6); # Alois P. Heinz, Nov 29 2016
-
Table[Det[Table[Hyperfactorial[i + j]/4, {i, n}, {j, n}]], {n, 6}]
A278897
First series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).
Original entry on oeis.org
1, 1, 14, 146275425484, 558429168112511379835233509679413804180016
Offset: 0
-
with(LinearAlgebra), with(combinat):
h20:=(i,j)->bell((i+j-2)^2):
seq(Determinant(Matrix(kk,kk,h20)),kk=0..6);
-
Table[Det[Table[BellB[(i + j - 2)^2], {i, n}, {j, n}]], {n, 6}], n=>1.
A278903
Second series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).
Original entry on oeis.org
1, 1, 20922, 96938760190744854628604, 1039473181175725249030299777705981025900981837012416973957739853576960
Offset: 0
-
with(LinearAlgebra), with(combinat):
h21:=(i, j)->bell((i+j-1)^2):
seq(Determinant(Matrix(kk, kk, h21)), kk=0..6);
-
Table[Det[Table[BellB[(i + j - 1)^2], {i, n}, {j, n}]], {n, 5}], n=>1.
Showing 1-3 of 3 results.
Comments