A278908 Multiplicative with a(p^e) = 2^omega(e), where omega = A001221.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Xiaodong Cao and Wenguang Zahi, Some arithmetic functions involving exponential divisors, Journal of Integer Sequences, Vol. 13 (2010), Article 10.3.7, eq (20).
- Nicuşor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35 (2011), pp. 205-216.
- László Tóth, On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166; arXiv preprint, arXiv:0708.3557 [math.NT], 2007-2009.
- Xiangzhen Zhao, Min Liu, and Yu Huang, Mean value for the function t^(e)(n) over square-full numbers, Scientia Magna, Vol. 8, No. 3 (2012), pp. 110-114.
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Cf. A001221.
Programs
-
Maple
A278908 := proc(n) local a,p,e; a := 1; if n =1 then ; else for p in ifactors(n)[2] do e := op(2,p) ; a := a*2^A001221(e) ; end do: end if; a ; end proc:
-
Mathematica
Table[Times @@ Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> 2^PrimeNu[e]], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2^omega(f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jul 28 2017
-
Scheme
(define (A278908 n) (if (= 1 n) n (* (A000079 (A001221 (A067029 n))) (A278908 (A028234 n))))) ;; Antti Karttunen, Jul 27 2017
Formula
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (2*omega(k) - 2^omega(k-1))/p^k) = 1.5431653193... (Tóth, 2007). - Amiram Eldar, Nov 08 2020
Comments