cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278908 Multiplicative with a(p^e) = 2^omega(e), where omega = A001221.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Nov 30 2016

Keywords

Comments

The number of exponential unitary (or e-unitary) divisors of n and the number of exponential squarefree exponential divisors (or e-squarefree e-divisors) of n. These are divisors of n = Product p(i)^a(i) of the form Product p(i)^b(i) where each b(i) is a unitary divisor of a(i) in the first case, or each b(i) is a squarefree divisor of a(i) in the second case. - Amiram Eldar, Dec 29 2018

Crossrefs

Cf. A001221.

Programs

  • Maple
    A278908 := proc(n)
        local a,p,e;
        a := 1;
        if n =1 then
            ;
        else
            for p in ifactors(n)[2] do
                e := op(2,p) ;
                a := a*2^A001221(e) ;
            end do:
        end if;
        a ;
    end proc:
  • Mathematica
    Table[Times @@ Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> 2^PrimeNu[e]], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2^omega(f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jul 28 2017
  • Scheme
    (define (A278908 n) (if (= 1 n) n (* (A000079 (A001221 (A067029 n))) (A278908 (A028234 n))))) ;; Antti Karttunen, Jul 27 2017
    

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (2*omega(k) - 2^omega(k-1))/p^k) = 1.5431653193... (Tóth, 2007). - Amiram Eldar, Nov 08 2020