A278919 Numbers n such that phi(n-2) divides sigma(n-1)+1.
3, 4, 5, 17, 26, 257, 65537, 4294967297
Offset: 1
Examples
3 is in this sequence because phi(1) divides sigma(2)+1; 1 divides 4. 4 is in this sequence because phi(2) divides sigma(3)+1; 1 divides 5. 5 is in this sequence because phi(3) divides sigma(4)+1; 2 divides 8. 17 is in this sequence because phi(15) divides sigma(16)+1; 8 divides 32.
Links
- Lucas A. Brown, Python program.
Programs
-
Magma
[3] cat [n: n in [4..10000000] | Denominator((SumOfDivisors(n-1)+1)/EulerPhi(n-2)) eq 1];
-
Mathematica
Select[Range[3,66000],Divisible[DivisorSigma[1,(#-1)]+1,EulerPhi[#-2]]&] (* Ivan N. Ianakiev, Dec 05 2016 *)
Extensions
a(8) from Ivan N. Ianakiev, Dec 05 2016
Comments