cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278945 Expansion of Sum_{k>=1} k*(2*k - 1)*x^k/(1 - x^k).

Original entry on oeis.org

0, 1, 7, 16, 35, 46, 88, 92, 155, 169, 242, 232, 392, 326, 476, 496, 651, 562, 871, 704, 1050, 968, 1184, 1036, 1640, 1271, 1658, 1600, 2044, 1654, 2528, 1892, 2667, 2392, 2846, 2552, 3731, 2702, 3560, 3344, 4330, 3322, 4904, 3656, 5040, 4654, 5228, 4372, 6696, 4845, 6417, 5728, 7042, 5566, 8080, 6272, 8380, 7160, 8330, 6904, 10752
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Inverse Moebius transform of hexagonal numbers (A000384).

Crossrefs

Programs

  • Magma
    [0] cat [2*DivisorSigma(2, n) - DivisorSigma(1, n): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016
    
  • Mathematica
    nmax=60; CoefficientList[Series[Sum[k (2 k - 1) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Flatten[{0, Table[2*DivisorSigma[2, n] - DivisorSigma[1, n], {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); 2 * sigma(f, 2) - sigma(f)); \\ Amiram Eldar, Dec 29 2024

Formula

G.f.: Sum_{k>=1} k*(2*k - 1)*x^k/(1 - x^k).
Dirichlet g.f.: (2*zeta(s-2) - zeta(s-1))*zeta(s).
a(n) = Sum_{d|n} d*(2*d - 1).
a(n) = 2*A001157(n) - A000203(n).
Sum_{k=1..n} a(k) ~ (2*zeta(3)/3) * n^3. - Amiram Eldar, Dec 29 2024