cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278947 Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).

Original entry on oeis.org

0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2016

Keywords

Comments

Inverse Moebius transform of heptagonal numbers (A000566).

Crossrefs

Cf. A000203, A000566 (heptagonal numbers), A002117, A059358.
Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), A116913 (k=5), A278945 (k=6), this sequence (k=7).

Programs

  • Mathematica
    nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k),  {k, 1, nmax}], {x, 0, nmax}], x]
    Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024

Formula

G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
a(n) = (5*A001157(n) - 3*A000203(n))/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024