A278947 Expansion of Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
0, 1, 8, 19, 42, 56, 107, 113, 190, 208, 298, 287, 483, 404, 589, 614, 806, 698, 1079, 875, 1302, 1202, 1471, 1289, 2035, 1581, 2062, 1990, 2541, 2060, 3142, 2357, 3318, 2978, 3544, 3178, 4641, 3368, 4435, 4166, 5390, 4142, 6106, 4559, 6279, 5798, 6517, 5453, 8339, 6042, 7998, 7142, 8778, 6944, 10070, 7822, 10445, 8930, 10390
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- Mira Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
- Index to sequences related to polygonal numbers.
Crossrefs
Programs
-
Mathematica
nmax=58; CoefficientList[Series[Sum[(k (5 k - 3)/2) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Flatten[{0, Table[(5*DivisorSigma[2, n] - 3*DivisorSigma[1, n])/2, {n, 1, 100}]}] (* Vaclav Kotesovec, Dec 05 2016 *)
-
PARI
a(n) = if(n == 0, 0, my(f = factor(n)); (5 * sigma(f, 2) - 3 * sigma(f)) / 2); \\ Amiram Eldar, Dec 29 2024
Formula
G.f.: Sum_{k>=1} (k*(5*k - 3)/2)*x^k/(1 - x^k).
Dirichlet g.f.: (5*zeta(s-2) - 3*zeta(s-1))*zeta(s)/2.
a(n) = Sum_{d|n} d*(5*d - 3)/2.
Sum_{k=1..n} a(k) ~ (5*zeta(3)/6) * n^3. - Amiram Eldar, Dec 29 2024
Comments