cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A116913 Inverse Moebius transform of pentagonal numbers.

Original entry on oeis.org

1, 6, 13, 28, 36, 69, 71, 120, 130, 186, 177, 301, 248, 363, 378, 496, 426, 663, 533, 798, 734, 897, 783, 1245, 961, 1254, 1210, 1547, 1248, 1914, 1427, 2016, 1806, 2148, 1926, 2821, 2036, 2685, 2522, 3270, 2502, 3702, 2753, 3801, 3510, 3939, 3291, 5053, 3648
Offset: 1

Views

Author

Jonathan Vos Post, Mar 19 2006

Keywords

Crossrefs

Cf. A000326 (pentagonal numbers), A000203, A002117.
Inverse Moebius transforms of polygonal numbers: A007437 (k=3), A001157 (k=4), this sequence (k=5), A278945 (k=6), A278947 (k=7).

Programs

  • Mathematica
    Table[Sum[d*(3d - 1)/2, {d, Divisors[n]}], {n, 101}] (* Indranil Ghosh, May 23 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*(3*d-1)/2); \\ Michel Marcus, Mar 25 2015
    
  • PARI
    a(n) = {my(f = factor(n)); (3 * sigma(f, 2) - sigma(f)) / 2;} \\ Amiram Eldar, Dec 29 2024

Formula

a(n) = Sum_{d|n} d*(3*d-1)/2.
G.f.: Sum_{k>=1} k*(3*k-1)/2*x^k/(1 - x^k). - Ilya Gutkovskiy, May 23 2017
From Amiram Eldar, Dec 29 2024: (Start)
a(n) = (3*sigma_2(n) - sigma(n)) / 2 = (3*A001157(n) - A000203(n)) / 2.
Dirichlet g.f.: zeta(s) * (3*zeta(s-2) - zeta(s-1))/2.
Sum_{k=1..n} a(k) ~ (zeta(3)/2) * n^3. (End)

Extensions

More terms from Michel Marcus, Mar 25 2015
Showing 1-1 of 1 results.