cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279019 Least possible number of diagonals of simple convex polyhedron with n faces.

Original entry on oeis.org

0, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450
Offset: 4

Views

Author

Vladimir Letsko, Dec 03 2016

Keywords

Comments

Obviously, a pyramid has no diagonals. Hence minimum of diagonals of an arbitrary convex polyhedron having n faces is equal to 0.
Minimum number of diagonals among simple convex polyhedra having n faces is obtained from a polyhedron with two triangular faces, n-4 quadrangular faces and two (n-1)-sided faces. A polyhedron having 3 triangular faces, 3 pentagonal faces and 1 hexagonal face gives another example of a simple convex polyhedron with the least possible number of diagonals for n = 7. A polyhedron having 4 triangular faces and 4 hexagonal faces gives a similar example for n = 8.
Essentially the same as A103505 and A002378. - R. J. Mathar, Dec 05 2016

Crossrefs

Programs

  • Mathematica
    Table[(n-4)(n-5),{n,4,60}] (* or *) LinearRecurrence[{3,-3,1},{0,0,2},60] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    concat(vector(2), Vec(2*x^6 / (1 - x)^3 + O(x^60))) \\ Colin Barker, Dec 05 2016

Formula

a(n) = n^2 - 9*n + 20 = (n-4)*(n-5).
G.f.: -2*x^6/(x-1)^3. - R. J. Mathar, Dec 05 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6. - Colin Barker, Dec 05 2016
E.g.f.: exp(x)*(20 - 8*x + x^2) - x^3/3 - 3*x^2 - 12*x - 20. - Stefano Spezia, Nov 24 2019
From Amiram Eldar, Jul 09 2023: (Start)
Sum_{n>=6} 1/a(n) = 1.
Sum_{n>=6} (-1)^n/a(n) = 2*log(2) - 1. (End)