A279026 Size of blocks of 1's in the second column of Catalan numbers written in binary and left-aligned.
1, 1, 2, 4, 6, 10, 15, 23, 36, 59, 93, 148, 234, 372, 592, 939, 1490, 2366, 3754, 5959, 9460, 15017, 23838, 37841, 60068, 95352, 151362
Offset: 1
Examples
Left-align the binary representation of the Catalan numbers: 1 1 10 101 1110 101010 10000100 110101101 10110010110 The first column is all 1's, by definition. The next column appears to have blocks of 1's and 0's. The sizes of the blocks make this sequence. The values of this column may be generated with the MMA code: Table[If[2^Floor[Log2[CatalanNumber[n]]] + 2^(Floor[Log2[CatalanNumber[n]]] - 1) < CatalanNumber[n], 1, 0], {n, 1, 1000}].
Crossrefs
Cf. A000108.
Programs
-
Mathematica
Num = 10000; T = Table[If[2^Floor[Log2[CatalanNumber[n]]] +2^(Floor[Log2[CatalanNumber[n]]] - 1) < CatalanNumber[n], 1, 0], {n, 1, Num}]; S = {}; For[i = 1, i < Num, i++, j = 0; If[T[[i]] == 1, While[T[[i]] == 1, i++; j++]; AppendTo[S, j];];]; S
Extensions
a(21)-a(27) from Chai Wah Wu, Dec 22 2016
Comments