A279029 Numbers k with the property that the smallest and the largest Dyck path of the symmetric representation of sigma(k) do not share line segments.
1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 136, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 256
Offset: 1
Keywords
Examples
1, 2, 3, 4, 6, 8, 10, 12 and 16 are in the sequence because the smallest and the largest Dyck path of their symmetric representation of sigma do not share line segments, as shown below. Illustration of initial terms: n . _ _ _ _ _ _ _ _ _ 1 |_| | | | | | | | | | | | | | 2 |_ _|_| | | | | | | | | | | | 3 |_ _| _|_| | | | | | | | | | 4 |_ _ _| _|_| | | | | | | | _ _ _| _| _ _|_| | | | | | 6 |_ _ _ _| _| | _ _|_| | | | _ _ _ _| |_ _|_| _ _| | | 8 |_ _ _ _ _| _| | _ _ _| | _ _ _ _ _| | _| | _ _ _| 10 |_ _ _ _ _ _| _ _| _| | _ _ _ _ _ _| | _| _| 12 |_ _ _ _ _ _ _| _ _| _| | _ _| | | _ _ _ _ _ _ _ _| | 16 |_ _ _ _ _ _ _ _ _| ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Hartmut F. W. Hoft, Proof: Dyck Paths of SRS(n) meeting only at diagonal
- Hartmut F. W. Hoft, Proofs for A279029 = A174973 union A262259
Crossrefs
Programs
-
Mathematica
(* Function path[] is defined in A237270 *) a279029Q[n_] := Length[Select[Transpose[{Take[path[n], {2,-2}], path[n-1]}], #[[1]]==#[[2]]&]]<=1 a279029[n_] := Select[Range[n], a279029Q] a279029[256] (* Alternate, faster function based on A249223 *) a003056[n_] := Floor[(Sqrt[8n+1]-1)/2] t249223[n_] :=FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, a003056[n]]] a262259Q[n_] := Position[t249223[n], 0]=={{a003056[n]}}&&Last[t237591[n]]==1 a174973Q[n_] := !MemberQ[t249223[n], 0] a279029[n_] := Select[Range[n], a262259Q[#]||a174973Q[#]&] a279029[256] (* Hartmut F. W. Hoft, Jan 25 2025 *)
-
PARI
is_A279029 = A379968; \\ Antti Karttunen, Jan 12 2025
Formula
a(n) = A323648(n-1) + 1, for n >= 2. - Hartmut F. W. Hoft, Jan 25 2025
Comments