cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 90, 40, 120, 40, 15, 45, 15, 1, 720, 840, 504, 504, 420, 630, 210, 280, 210, 420, 70, 105, 105, 21, 1, 5040, 5760, 3360, 3360, 2688, 4032, 1344, 1260, 3360, 1260, 2520, 420, 1120, 1120, 1680, 1120, 112, 105, 420, 210, 28, 1
Offset: 0

Views

Author

David W. Wilson and Olivier Gérard, Dec 04 2016

Keywords

Comments

The ordering of integer partitions used in this version is also called:
- canonical ordering
- graded reverse lexicographic ordering
- magma (software) ordering
by opposition to the ordering used by Abramowitz and Stegun.

Examples

			First rows are:
    1
    1
    1   1
    2   3   1
    6   8   3   6   1
   24  30  20  20  15   10   1
  120 144  90  90  40  120  40  15  45  15  1
  720 840 504 504 420  630 210 280 210 420 70 105 105 21 1
  ...
		

Crossrefs

Cf. A000041 (number of partitions of n, length of each row).
Cf. A128628 (triangle of partition lengths)
Cf. A036039 (a different ordering), A102189 (row reversed version of A036039).
Row sums give A000142.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(i<1, [], [seq(map(x-> x*i^j*j!,
           b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])]))
        end:
    T:= n-> map(x-> n!/x, b(n$2))[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 04 2016
  • Mathematica
    Flatten[Table[
      Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@
            Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {1},
         If[i < 1, {}, Flatten@Table[#*i^j*j!& /@
         b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]];
    T[n_] := n!/#& /@ b[n, n];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)

Extensions

One term for row n=0 prepended by Alois P. Heinz, Dec 04 2016