A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).
1, 1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 90, 40, 120, 40, 15, 45, 15, 1, 720, 840, 504, 504, 420, 630, 210, 280, 210, 420, 70, 105, 105, 21, 1, 5040, 5760, 3360, 3360, 2688, 4032, 1344, 1260, 3360, 1260, 2520, 420, 1120, 1120, 1680, 1120, 112, 105, 420, 210, 28, 1
Offset: 0
Examples
First rows are: 1 1 1 1 2 3 1 6 8 3 6 1 24 30 20 20 15 10 1 120 144 90 90 40 120 40 15 45 15 1 720 840 504 504 420 630 210 280 210 420 70 105 105 21 1 ...
Links
- Alois P. Heinz, Rows n = 0..28, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], [seq(map(x-> x*i^j*j!, b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])])) end: T:= n-> map(x-> n!/x, b(n$2))[]: seq(T(n), n=0..10); # Alois P. Heinz, Dec 04 2016
-
Mathematica
Flatten[Table[ Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@ Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Flatten@Table[#*i^j*j!& /@ b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]]; T[n_] := n!/#& /@ b[n, n]; T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Jun 01 2021, after Alois P. Heinz *)
Extensions
One term for row n=0 prepended by Alois P. Heinz, Dec 04 2016
Comments