A279052 Semiprimes whose binary and ternary representations are prime when read in decimal.
295, 1189, 2515, 4399, 4897, 5137, 7045, 7261, 7999, 8065, 9019, 9637, 10579, 10951, 10963, 11035, 11233, 12679, 13315, 13603, 13849, 16279, 18295, 20065, 20467, 20497, 23089, 23419, 23551, 23983, 26359, 27007, 27301, 27787, 29647, 33127, 33253, 33763, 34189, 34411
Offset: 1
Examples
295 is in the sequence because 295 = 5*59 (semiprime), 295_10 = 100100111_2 = 101221_3, and both 100100111_10 and 101221_10 are prime. 1189 is in the sequence because 1189 = 29*41 (semiprime), and both its binary representation 10010100101 and its ternary representation 1122001, if read as decimal numbers, are prime.
Links
- K. D. Bajpai and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 4075 terms from K. D. Bajpai)
Programs
-
Mathematica
Select[Range[50000], PrimeOmega[#] == 2 && PrimeQ[FromDigits[IntegerDigits[#, 2]]] && PrimeQ[FromDigits[IntegerDigits[#, 3]]] &]
-
PARI
has(n,b)=isprime(fromdigits(digits(n,b),10)) list(lim)=my(v=List(),t); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), if(has(t=p*q,2) && has(t,3), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Dec 05 2016