cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279061 Number of divisors of n of the form 7*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möebius transform is a period-7 sequence {1, 0, 0, 0, 0, 0, 0, ...}.

Examples

			a(8) = 2 because 8 has 4 divisors {1,2,4,8} among which 2 divisors {1,8} are of the form 7*k + 1.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    V:= Vector(N):
    for k from 1 to N do
      R:= [seq(i,i=k..N,7*k)];
      V[R]:= map(`+`,V[R],1);
    od:
    0,seq(V[i],i=1..N); # Robert Israel, Dec 05 2016
  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(7 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(7 k + 1)/(1 - x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(IntegerQ[(#-1)/7]&)],{n,0,100}] (* _Harvey P. Dale, Nov 08 2022 *)
  • PARI
    concat([0], Vec(sum(k=1, 100, x^k / (1 - x^(7*k))) + O(x^101))) \\ Indranil Ghosh, Mar 29 2017

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(7*k)).
G.f.: Sum_{k>=0} x^(7*k+1)/(1 - x^(7*k+1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,7) - (1 - gamma)/7 = 0.713612..., gamma(1,7) = -(psi(1/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023