cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A363795 Number of divisors of n of the form 7*k + 2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==2);

Formula

G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-5)/(1 - x^(7*k-5)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,7) - (1 - gamma)/7 = 0.188117..., gamma(2,7) = -(psi(2/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363805 Number of divisors of n of the form 7*k + 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 3, 0, 0, 2, 1, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==3);

Formula

G.f.: Sum_{k>0} x^(3*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-4)/(1 - x^(7*k-4)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,7) - (1 - gamma)/7 = -0.0004108181..., gamma(3,7) = -(psi(3/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363806 Number of divisors of n of the form 7*k + 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==4);

Formula

G.f.: Sum_{k>0} x^(4*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-3)/(1 - x^(7*k-3)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,7) - (1 - gamma)/7 = -0.102846..., gamma(4,7) = -(psi(4/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363807 Number of divisors of n of the form 7*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 5 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==5);

Formula

G.f.: Sum_{k>0} x^(5*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-2)/(1 - x^(7*k-2)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,7) - (1 - gamma)/7 = -0.169787..., gamma(5,7) = -(psi(5/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363808 Number of divisors of n of the form 7*k + 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==6);

Formula

G.f.: Sum_{k>0} x^(6*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-1)/(1 - x^(7*k-1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,7) - (1 - gamma)/7 = -0.218328..., gamma(6,7) = -(psi(6/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A361691 Number of divisors of 7*n-1 of form 7*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-1 of form 7*k+6.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 1, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-1, d, d%7==1);

Formula

a(n) = A279061(7*n-1) = A363808(7*n-1).
G.f.: Sum_{k>0} x^(6*k-5)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-1)).

A363850 Number of divisors of 7*n-3 of form 7*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-3 of form 7*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 3, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-3, d, d%7==1);

Formula

a(n) = A279061(7*n-3) = A363806(7*n-3).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-3)).

A363852 Number of divisors of 7*n-5 of form 7*k+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-5 of form 7*k+2.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 5, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-5, d, d%7==1);

Formula

a(n) = A279061(7*n-5) = A363795(7*n-5).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-5)).

A373336 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k) + x^(5*k) + x^(6*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, -1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 0, 1, -1, 1, 0, 1, 1, 0, 0, 1, -1, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 1, -1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(7*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%7==1)-(d%7==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(7*k)).
a(n) = A279061(n) - A363795(n).

A362845 Number of divisors of 7*n-2 of form 7*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-2 of form 7*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 2, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-2, d, d%7==1);

Formula

a(n) = A279061(7*n-2) = A363807(7*n-2).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-2)).
Showing 1-10 of 12 results. Next