cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A363795 Number of divisors of n of the form 7*k + 2.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==2);

Formula

G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-5)/(1 - x^(7*k-5)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(2,7) - (1 - gamma)/7 = 0.188117..., gamma(2,7) = -(psi(2/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363805 Number of divisors of n of the form 7*k + 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 3, 0, 0, 2, 1, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==3);

Formula

G.f.: Sum_{k>0} x^(3*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-4)/(1 - x^(7*k-4)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,7) - (1 - gamma)/7 = -0.0004108181..., gamma(3,7) = -(psi(3/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363807 Number of divisors of n of the form 7*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 5 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==5);

Formula

G.f.: Sum_{k>0} x^(5*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-2)/(1 - x^(7*k-2)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,7) - (1 - gamma)/7 = -0.169787..., gamma(5,7) = -(psi(5/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363808 Number of divisors of n of the form 7*k + 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==6);

Formula

G.f.: Sum_{k>0} x^(6*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-1)/(1 - x^(7*k-1)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(6,7) - (1 - gamma)/7 = -0.218328..., gamma(6,7) = -(psi(6/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363856 Number of divisors of 7*n-4 of form 7*k+6.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 0, 1, 0, 2, 0, 2, 1, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-4 of form 7*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 4, 1 &, Mod[#, 7] == 6 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-4, d, d%7==6);

Formula

a(n) = A363806(7*n-4) = A363808(7*n-4).
G.f.: Sum_{k>0} x^(4*k)/(1 - x^(7*k-1)).
G.f.: Sum_{k>0} x^(6*k-2)/(1 - x^(7*k-3)).

A363850 Number of divisors of 7*n-3 of form 7*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-3 of form 7*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 3, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-3, d, d%7==1);

Formula

a(n) = A279061(7*n-3) = A363806(7*n-3).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(7*k-6)).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-3)).

A363888 Number of divisors of 7*n-5 of form 7*k+4.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 5, 1 &, Mod[#, 7] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    a(n) = sumdiv(7*n-5, d, d%7==4);

Formula

a(n) = A363806(7*n-5).
G.f.: Sum_{k>0} x^(4*k-1)/(1 - x^(7*k-3)).

A363860 Number of divisors of 7*n-1 of form 7*k+4.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 3, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 3, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 2, 0, 2, 0, 1, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Comments

Also number of divisors of 7*n-1 of form 7*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 1, 1 &, Mod[#, 7] == 4 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-1, d, d%7==4);

Formula

a(n) = A363806(7*n-1) = A363807(7*n-1).
G.f.: Sum_{k>0} x^(5*k-2)/(1 - x^(7*k-3)).
G.f.: Sum_{k>0} x^(4*k-1)/(1 - x^(7*k-2)).

A363877 Number of divisors of 7*n-2 of form 7*k+3.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 1, 0, 0, 4, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 0, 3, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jun 25 2023

Keywords

Comments

Also number of divisors of 7*n-2 of form 7*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 2, 1 &, Mod[#, 7] == 3 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-2, d, d%7==3);

Formula

a(n) = A363805(7*n-2) = A363806(7*n-2).
G.f.: Sum_{k>0} x^(4*k-2)/(1 - x^(7*k-4)).
G.f.: Sum_{k>0} x^(3*k-1)/(1 - x^(7*k-3)).

A363879 Number of divisors of 7*n-6 of form 7*k+2.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 3, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 2, 0, 1, 0, 3, 1, 3, 0, 2, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 3, 0, 2, 0, 2, 0, 3, 0, 2, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 25 2023

Keywords

Comments

Also number of divisors of 7*n-6 of form 7*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 6, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-6, d, d%7==2);

Formula

a(n) = A363795(7*n-6) = A363806(7*n-6).
G.f.: Sum_{k>0} x^(4*k-2)/(1 - x^(7*k-5)).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k-3)).
Showing 1-10 of 10 results.