A279073 Smallest positive number whose residues modulo the first n primes are all different.
1, 2, 3, 5, 8, 87, 116, 129, 129, 129, 129, 129, 129, 202, 202, 202, 202, 202, 6753, 7769, 14614, 14614, 16574, 30777, 30777, 30777, 30777, 30777, 90878, 99483, 99483, 99483, 99483, 99483, 99483, 99483, 99483, 680384, 845662, 1719404, 1787204, 1787204, 1787204
Offset: 1
Keywords
Examples
For n=6, the first n primes are {2, 3, 5, 7, 11, 13}; 87 mod {2, 3, 5, 7, 11, 13} = {1, 0, 2, 3, 10, 9} (all different), and this does not occur for any k < 87, so a(6) = 87. For n=8, 129 mod (each of the first n primes) gives {1, 0, 4, 3, 8, 12, 10, 15} (all different), and this does not occur for any k < 129, so a(8) = 129. Additionally, 129 mod p for each of the next 5 primes p gives {14, 13, 5, 18, 6} (all different from the first eight residues and from each other), so 129 is also a(9)..a(13). (This run of identical terms stops at n=13, since 129 mod prime(14) = 129 mod 43 = 0 = 129 mod prime(2).)
Programs
-
Mathematica
f[k_, m_] := Mod[k, #] & /@ Prime[Range[m]]; lst = {1}; f[n_] := Module[{k = Last[lst]},While[Sort[f[k, n]] != Union[f[k, n]], k++]; AppendTo[lst, k]];f /@ Range[30]; Rest[lst] (* Ivan N. Ianakiev, Jan 17 2017 *)
-
PARI
a(n) = {k = 1; ok = 0; while (!ok, vp = vector(n, j, k % prime(j)); if (#vecsort(vp,,8) == n, ok = 1, k++);); k;} \\ Michel Marcus, Jan 22 2017
Comments