cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054499 Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords.

Original entry on oeis.org

1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431
Offset: 0

Views

Author

Christian G. Bower, Apr 06 2000 based on a problem by Wouter Meeussen

Keywords

Comments

Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner. Allow turning over.

Examples

			For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - _Michael B. Porter_, Jul 27 2016
		

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

Cf. A007769, A104256, A279207, A279208, A003437 (loopless chord diagrams), A322176 (marked chords), A362657, A362658, A362659 (three, four, five instances of each color rather than two), A371305 (Multiset Transf.), A260847 (directed chords).

Programs

  • Mathematica
    max = 19;
    alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
    alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
    a[0] = 1;
    a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
    Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)

Formula

a(n) = (2*A007769(n) + A047974(n) + A047974(n-1))/4 for n > 0.

Extensions

Corrected and extended by N. J. A. Sloane, Oct 29 2006
a(0)=1 prepended back again by Andrey Zabolotskiy, Jul 27 2016

A007769 Number of chord diagrams with n chords; number of pairings on a necklace.

Original entry on oeis.org

1, 1, 2, 5, 18, 105, 902, 9749, 127072, 1915951, 32743182, 624999093, 13176573910, 304072048265, 7623505722158, 206342800616597, 5996837126024824, 186254702826289089, 6156752656678674792, 215810382466145354405, 7995774669504366055054
Offset: 0

Views

Author

Jean.Betrema(AT)labri.u-bordeaux.fr

Keywords

Comments

Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner.

Crossrefs

Programs

  • Maple
    alpha:=proc(p, q)
        local k;
        if is(q, even) then
            add(binomial(p, 2*k)*q^k*doublefactorial(2*k-1), k=0..p/2)
        else
            q^(p/2)*doublefactorial(p-1)
        end if
    end proc:
    A007769 := proc(n)
        local p;
        if n = 0 then
            1;
        else
            add(alpha(2*n/p, p)*numtheory[phi](p), p=numtheory[divisors](2*n))/2/n
        end if;
    end proc:
    seq(A007769(n),n=0..10) ; # Robert FERREOL, Oct 10 2018
  • Mathematica
    max = 20; alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2k]*q^k*(2k-1)!!, {k, 0, max}]; alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!; a[0] = 1; a[n_] := Sum[q = 2n/p; alpha[p, q]*EulerPhi[q], {p, Divisors[2n]}]/(2n); Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 07 2012, after R. J. Mathar *)
    Stoimenow states that a Mma package is available from his website. - N. J. A. Sloane, Jul 26 2018
  • PARI
    doublefactorial(n)={ local(resul) ; resul=1 ; forstep(i=n,2,-2, resul *= i ;) ; return(resul) ; }
    alpha(n,q)={ if(q %2, return( q^(p/2)*doublefactorial(p-1)), return( sum(k=0,p/2,binomial(p,2*k)*q^k*doublefactorial(2*k-1)) ) ;) ; }
    A007769(n)={ local(resul,q) ; if(n==0, return(1), resul=0 ; fordiv(2*n,p, q=2*n/p ; resul += alpha(p,q)*eulerphi(q) ;); return(resul/(2*n)) ;) ; } { for(n=0,20, print(n," ",A007769(n)) ;) ; } \\ R. J. Mathar, Oct 26 2006

Formula

2n a_n = Sum_{2n=pq} alpha(p, q)phi(q), phi = Euler function, alpha(p, q) = Sum_{k >= 0} binomial(p, 2k) q^k (2k-1)!! if q even, = q^{p/2} (p-1)!! if q odd.

Extensions

More terms from Christian G. Bower, Apr 06 2000
Corrected and extended by R. J. Mathar, Oct 26 2006

A279207 Number of analytic chord diagrams with n chords.

Original entry on oeis.org

1, 2, 5, 18, 102, 817, 7641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2016

Keywords

Crossrefs

Showing 1-3 of 3 results.