cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302249 a(n) is the number of divisors of A279254(n) in Gaussian integers.

Original entry on oeis.org

1, 3, 5, 6, 7, 12, 20, 24, 28, 40, 45, 56, 60, 63, 72, 80, 90, 96, 112, 126, 160, 162, 180, 224, 240, 252, 288, 360, 384, 504, 540, 640, 648, 720, 756, 896, 960, 1008, 1152, 1440, 2016, 2160, 2592, 3024, 3168, 3584, 3888, 4032
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

The divisors are counted mod associates.
Conjecture: a(14) = 63 is the largest odd term.

Examples

			A279254(14) = 200 and 200 has 63 divisors in Gaussian integers (up to association), so a(14) = 63.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[0, #, GaussianIntegers -> True] &, 10^6]}, Union@ FoldList[Max, s]] (* Michael De Vlieger, Apr 05 2018 *)
  • PARI
    b(n)= \\ A062327
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2, r*=(2*e+1));
            if(p%4==1, r*=(e+1)^2);
            if(p%4==3, r*=(e+1));
        );
        return(r);
    }
    { my(r=0, t); for(n=1, 10^6, t=b(n); if(t>r, r=t; print1(t, ", "))); }
    \\ Joerg Arndt, Apr 04 2018

Formula

a(n) = A062327(A279254(n)).

A332320 Numbers k that are highly norm-abundant in Gaussian integers, i.e., A103230(m) < A103230(k) for all m < k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 15, 18, 20, 26, 30, 50, 60, 70, 78, 90, 130, 150, 170, 180, 210, 260, 270, 330, 390, 510, 630, 780, 870, 910, 990, 1020, 1050, 1110, 1170, 1530, 1890, 1950, 2210, 2340, 2550, 2730, 3510, 4290, 4590, 5070, 5460, 5610, 5850, 6630, 8190, 10530
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

Analogous to highly abundant numbers (A002093), with the norm of the sum of divisors function generalized for Gaussian integers (A103230) instead of the sum of divisors function (A000203).

Examples

			The first 6 terms of A103230 are 1, 13, 16, 41, 80, 208, 64, 113, 169, 1040. The record values occur at n = 1, 2, 3, 4, 5, 6, 10, the first 7 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Abs[DivisorSigma[1, n, GaussianIntegers -> True]]^2; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1,10^4}]; seq

A332321 Numbers k that are norm-superabundant in Gaussian integers, i.e., A103230(m)/m^2 < A103230(k)/k^2 for all m < k.

Original entry on oeis.org

1, 2, 6, 10, 30, 90, 130, 210, 390, 1170, 2730, 5850, 6630, 19890, 46410, 99450, 139230, 192270, 576810, 1345890, 2884050, 4037670, 7883070, 12113010, 20188350, 23649210, 44414370, 49797930, 55181490, 118246050, 149393790, 165544470, 496633410, 746968950, 827722350
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

Analogous to superabundant numbers (A004394), with the magnitude of the sum of divisors function generalized for Gaussian integers (sqrt(A103230)) instead of the sum of divisors function (A000203).

Examples

			The first 6 terms of A103230 are 1, 13, 16, 41, 80, 208. The corresponding values of A103230(n)/n^2 are 1, 3.25, 1.777..., 2.5625, 3.2, 5.777... and the record values occur at n = 1, 2, 6, the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Abs[DivisorSigma[1, n, GaussianIntegers -> True]]^2/n^2; rm = 0; seq = {}; Do[r1 = r[n]; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 6*10^5}]; seq

A323392 Positive integers that have a record number of divisors in Eisenstein integers.

Original entry on oeis.org

1, 2, 3, 6, 12, 18, 21, 36, 42, 84, 126, 168, 252, 420, 504, 546, 1008, 1092, 1638, 2184, 3276, 5460, 6552, 7644, 9828, 10374, 13104, 15288, 16380, 20748, 31122, 38220, 41496, 62244, 103740, 124488, 145236, 186732, 207480, 248976, 290472, 311220, 435708, 622440, 726180, 871416
Offset: 1

Views

Author

Jianing Song, Jan 13 2019

Keywords

Comments

Indices of records in A319442.
Analog of A002182 and A279254, which list the positive integers that have a record number of divisors in rational integers and Gaussian integers respectively.
It seems that 21 is the largest odd term.

Examples

			252 has 60 divisors up to association in Eisenstein integers, more than any previous positive integers, so 252 is a term.
		

Crossrefs

For the number of divisors of a(n) see A323393.

Programs

  • Maple
    vmax:= 0: recinds:= NULL:
    for n from 1 to 100000 do
        v := A319442(n);
        if v > vmax then vmax:= v; recinds:= recinds, n fi
    od:
    recinds; # Peter Luschny, Jan 19 2019
  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; emax = 0; Do[eis = eisNumDiv[n]; If[eis > emax, emax = eis; AppendTo[seq, n]], {n, 1, 10^6}]; seq (* Amiram Eldar, Mar 02 2020 *)
  • PARI
    my(r=0, t); for(n=1, 10^6, t=A319442(n); if(t>r, r=t; print1(n, ", ")));

A335853 Numbers that are highly powerful in Gaussian integers.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 100, 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10000, 18000, 20000, 27000, 36000, 40000, 50000, 54000, 80000, 90000, 108000, 135000, 180000, 216000, 270000, 450000, 540000, 810000, 1080000, 1350000, 1620000, 2160000, 2700000
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2020

Keywords

Comments

Numbers with a record value of the product of the exponents in the prime factorization in Gaussian integers (A335852). Equivalently, numbers with a record number of powerful divisors in Gaussian integers.
The corresponding record values are 1, 2, 4, 6, 8, 10, 12, 16, 24, 32, 36, 40, 54, 72, 90, 96, ... (see the link for more values).

Examples

			The factorization of 1, 2, 3 and 4 in Gaussian integers are 1, -i*(1+i)^2, 3 and -(1+i)^4, and the corresponding products of the exponents are 1, 2, 1 and 4. The record values, 1, 2 and 4, occur at 1, 2 and 4 that are the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[Times @@ FactorInteger[#, GaussianIntegers -> True][[All, -1]] &, 10^5]}, Map[FirstPosition[s, #][[1]] &, Union@FoldList[Max, s]]] (* after Michael De Vlieger at A005934 *)
Showing 1-5 of 5 results.