cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279259 Smallest positive integer m such that m, m+1, m+2, m+3 are divisible by 2n+1, 2n+3, 2n+5, 2n+7 respectively.

Original entry on oeis.org

53, 159, 1735, 4508, 3222, 18238, 31499, 16965, 78013, 114722, 54348, 225124, 303425, 133515, 519187, 662408, 277794, 1035370, 1272023, 515697, 1864393, 2228174, 880920, 3112528, 3642317, 1412343, 4901599, 5641460, 2154030, 7368982, 8368163, 3155229, 10667605, 11980538
Offset: 0

Views

Author

Joseph Myers, Dec 08 2016

Keywords

Examples

			53 is the smallest positive integer such that 53, 54, 55, 56 are divisible by 1, 3, 5, 7 respectively, hence a(0) = 53. - _Bernard Schott_, Dec 08 2020
		

Programs

  • Mathematica
    LinearRecurrence[{0,0,5,0,0,-10,0,0,10,0,0,-5,0,0,1},{53,159,1735,4508,3222,18238,31499,16965,78013,114722,54348,225124,303425,133515,519187},40] (* Harvey P. Dale, Dec 29 2017 *)

Formula

a(n) = (2*n+1 + lcm(2*n+1, 2*n+3, 2*n+5, 2*n+7))/2.
G.f.: (8*x^14 +10*x^12 -89*x^11 -153*x^10 -1777*x^9 -4173*x^8 -2445*x^7 -9489*x^6 -9563*x^5 -2427*x^4 -4243*x^3 -1735*x^2 -159*x-53) / ((x-1)^5*(x^2+x+1)^5). - Alois P. Heinz, Dec 08 2016
From Bernard Schott, Dec 08 2020: (Start)
If n == 1 (mod 3), a(n) = (2*n+1)* ((2*n+3)*(2*n+5)*(2*n+7)/3 + 1)/2.
If n == 0, 2 (mod 3), a(n) = (2*n+1)* ((2*n+3)*(2*n+5)*(2*n+7) + 1)/2. (End)