cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294222 Exponential transform of the Lucas numbers (A000204).

Original entry on oeis.org

1, 1, 4, 14, 69, 372, 2320, 15913, 119938, 978456, 8586177, 80456488, 800905726, 8429875989, 93453556378, 1087491751050, 13244265431889, 168370713583760, 2229127899764052, 30671277674880073, 437770190804865414, 6470590710038358164, 98891186448861721537, 1560548838446810788940, 25394750159240696915562
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 25 2017

Keywords

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 69*x^4/4! + 372*x^5/5! + 2320*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    Range[0, 24]! CoefficientList[Series[Exp[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 2], {x, 0, 24}], x]
    a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] LucasL[k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(2*exp(x/2)*cosh(sqrt(5)*x/2) - 2).

A323722 Expansion of e.g.f. log(1 + exp(x)*sinh(sqrt(2)*x)/sqrt(2)).

Original entry on oeis.org

0, 1, 1, 1, -2, -7, 6, 119, 120, -2911, -12518, 90055, 977164, -2167375, -83354634, -168068473, 7777602768, 58283146817, -727882529102, -12779261480825, 46543629605236, 2663317412960849, 7760606919565134, -548896641490323385, -5830401238269419400, 104847450848773542497
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(log(1+exp(x)*sinh(sqrt(2)*x)/sqrt(2)),x=0,26),x,n),n=0..25); # Paolo P. Lava, Jan 29 2019
  • Mathematica
    FullSimplify[nmax = 25; CoefficientList[Series[Log[1 + Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, nmax}], x] Range[0, nmax]!]
    a[n_] := a[n] = Fibonacci[n, 2] - Sum[Binomial[n, k] Fibonacci[n - k, 2] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: log(1 + Sum_{k>=1} Pell(k)*x^k/k!).
a(0) = 0; a(n) = Pell(n) - (1/n)*Sum_{k=1..n-1} binomial(n,k)*Pell(n-k)*k*a(k).
Showing 1-2 of 2 results.