cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345075 E.g.f.: exp( x*(1 + 2*x) / (1 - x - x^2) ).

Original entry on oeis.org

1, 1, 7, 43, 409, 4441, 58351, 872467, 14776273, 278033329, 5759752951, 130094213371, 3181051122217, 83674165333513, 2355245699211679, 70617410638402531, 2246412316372784161, 75551901666095113057, 2678119105038094325863, 99778611508176786458059, 3897493112463397722989881
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Crossrefs

Programs

  • Maple
    A345075 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            add(binomial(n-1,k-1)*k!*procname(n-k)*A000204(k),k=1..n) ;
        end if;
    end proc:
    seq(A345075(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[x (1 + 2 x)/(1 - x - x^2)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] k! LucasL[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x*(1+2*x)/(1-x-x^2)))) \\ Michel Marcus, Jun 07 2021

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * k! * Lucas(k) * a(n-k).
a(n) ~ (1 + sqrt(5))^n * exp(1/(2*sqrt(5)) - 1 + 2*sqrt(n) - n) * n^(n - 1/4) / 2^(n + 1/2). - Vaclav Kotesovec, Jun 08 2021
D-finite with recurrence a(n) +(-2*n+1)*a(n-1) -(n+2)*(n-1)*a(n-2) +(2*n-5)*(n-1)*(n-2)*a(n-3) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Aug 20 2021

A323721 Expansion of e.g.f. log(2*exp(x/2)*cosh(sqrt(5)*x/2) - 1).

Original entry on oeis.org

0, 1, 2, -3, -6, 50, -13, -1498, 6234, 59145, -748678, -1415238, 92962179, -411570250, -11993577118, 167710062977, 1224967301754, -51920085859710, 135335259830867, 14992073315394822, -201575378391009366, -3667884891055854535, 128570113943360964602, 209758874692705861322
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(log(2*exp(x/2)*cosh(sqrt(5)*x/2)-1),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 28 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = LucasL[n] - Sum[Binomial[n, k] LucasL[n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: log(1 + Sum_{k>=1} Lucas(k)*x^k/k!).
a(0) = 0; a(n) = Lucas(n) - (1/n)*Sum_{k=1..n-1} binomial(n,k)*Lucas(n-k)*k*a(k).
Showing 1-2 of 2 results.