cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279281 Expansion of Product_{k>=1} (1 + x^(k*(3*k-2))).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct octagonal numbers (A000567).

Examples

			a(105) = 2 because we have [96, 8, 1] and [65, 40].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(3*k-2))).

A322798 Number of compositions (ordered partitions) of n into hexagonal numbers (A000384).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 22, 29, 37, 47, 60, 77, 101, 133, 174, 226, 292, 376, 486, 632, 823, 1072, 1394, 1808, 2342, 3036, 3939, 5116, 6648, 8636, 11211, 14548, 18875, 24493, 31795, 41283, 53604, 69594, 90338, 117251, 152184, 197540
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(2*t-1)>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i*(2*i-1)), i=1..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(2*k-1))).

A279280 Expansion of Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct heptagonal numbers (A000566).

Examples

			a(81) = 2 because we have [81] and [55, 18, 7, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

A281084 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered hexagonal numbers (A003215).

Examples

			a(98) = 2 because we have [91, 7] and [61, 37].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)+1)).

A350197 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero hexagonal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

1, 66, 126, 186, 277, 305, 377, 325, 416, 371, 445, 451, 511, 496, 536, 557, 607, 575, 653, 602, 630, 641, 682, 675, 668, 701, 710, 742, 746, 760, 767, 755, 800, 761, 874, 794, 845, 806, 846, 821, 861, 881, 880, 887, 867, 905, 906, 886, 911, 900
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Crossrefs

A332014 Number of compositions (ordered partitions) of n into distinct hexagonal numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 2, 6, 1, 2, 0, 0, 6, 24, 2, 6, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 7, 26, 0, 0, 0, 0, 2, 8, 6, 0, 0, 0, 0, 6, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(22) = 6 because we have [15, 6, 1], [15, 1, 6], [6, 15, 1], [6, 1, 15], [1, 15, 6] and [1, 6, 15].
		

Crossrefs

Showing 1-6 of 6 results.