A279314 Composite numbers n such that the sum of the prime factors of n, with multiplicity, is congruent to n (mod 9).
4, 22, 27, 58, 85, 94, 105, 114, 121, 150, 166, 202, 204, 222, 224, 265, 274, 315, 319, 342, 346, 355, 378, 382, 391, 438, 445, 450, 454, 483, 517, 526, 535, 540, 560, 562, 576, 588, 612, 627, 634, 636, 640, 645, 648, 654, 663, 666, 690, 697, 706, 728, 729, 762, 778, 825, 840, 841, 852
Offset: 1
Keywords
Examples
105 is a member as 105 = 3*5*7 with 105 mod 9 = 6 and (3+5+7) mod 9 = 15 mod 9 = 6.
Links
- Ely Golden, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A006753.
Programs
-
Mathematica
Select[Range[4, 860], Function[n, And[CompositeQ@ n, Mod[#, 9] == Mod[n, 9] &@ Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *) cnnQ[n_]:=CompositeQ[n]&&Mod[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]],9]==Mod[n,9]; Select[Range[900],cnnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 17 2017 *)
-
PARI
isok(n) = !isprime(n) && (f=factor(n)) && ((n % 9) == (sum(k=1, #f~, f[k,1]*f[k,2]) % 9)); \\ Michel Marcus, Dec 10 2016
-
SageMath
def factorSum(f): s=0 for c in range(len(f)): s+=(f[c][0]*f[c][1]) return s #this variable affects the modulus modulus=9 c=2 index=1 while(index<=10000): f=list(factor(c)) if(((len(f)>1)|(f[0][1]>1))&(factorSum(f)%modulus==c%modulus)): print(str(index)+" "+str(c)) index+=1 c+=1 print("complete")
Comments