cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279314 Composite numbers n such that the sum of the prime factors of n, with multiplicity, is congruent to n (mod 9).

Original entry on oeis.org

4, 22, 27, 58, 85, 94, 105, 114, 121, 150, 166, 202, 204, 222, 224, 265, 274, 315, 319, 342, 346, 355, 378, 382, 391, 438, 445, 450, 454, 483, 517, 526, 535, 540, 560, 562, 576, 588, 612, 627, 634, 636, 640, 645, 648, 654, 663, 666, 690, 697, 706, 728, 729, 762, 778, 825, 840, 841, 852
Offset: 1

Views

Author

Ely Golden, Dec 09 2016

Keywords

Comments

Supersequence of A006753 (Smith numbers).
Sequence is proven infinite due to the infinitude of the Smith numbers.
Can be generalized for other moduli. Setting the modulus to 1 yields the composite numbers. Setting the modulus to m (m>=2) yields the supersequence which includes the Smith numbers in base (m+1). Of course, m=1 includes all Smith numbers for any base.

Examples

			105 is a member as 105 = 3*5*7 with 105 mod 9 = 6 and (3+5+7) mod 9 = 15 mod 9 = 6.
		

Crossrefs

Cf. A006753.

Programs

  • Mathematica
    Select[Range[4, 860], Function[n, And[CompositeQ@ n, Mod[#, 9] == Mod[n, 9] &@ Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)
    cnnQ[n_]:=CompositeQ[n]&&Mod[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]],9]==Mod[n,9]; Select[Range[900],cnnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 17 2017 *)
  • PARI
    isok(n) = !isprime(n) && (f=factor(n)) && ((n % 9) == (sum(k=1, #f~, f[k,1]*f[k,2]) % 9)); \\ Michel Marcus, Dec 10 2016
  • SageMath
    def factorSum(f):
        s=0
        for c in range(len(f)):
            s+=(f[c][0]*f[c][1])
        return s
    #this variable affects the modulus
    modulus=9
    c=2
    index=1
    while(index<=10000):
        f=list(factor(c))
        if(((len(f)>1)|(f[0][1]>1))&(factorSum(f)%modulus==c%modulus)):
            print(str(index)+" "+str(c))
            index+=1
        c+=1
    print("complete")