cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339548 1 - 1/a(n) is the largest resistance value of this form that can be obtained from a resistor network of not more than n one-ohm resistors.

Original entry on oeis.org

2, 3, 4, 7, 11, 19, 35, 56, 105, 177, 321, 610, 1001, 1893, 3186, 5714, 10073, 18506
Offset: 2

Views

Author

Hugo Pfoertner, Dec 12 2020

Keywords

Examples

			The resistor networks from which the target resistance R = 1 - 1/a(n) can be obtained correspond to simple or multigraphs whose edges are one-ohm resistors. Parallel resistors on one edge are indicated by an exponent > 1 after the affected vertex pair. The resistance R occurs between vertex number 1 and the vertex with maximum number in the graph. In some cases there are other possible representations in addition to the representation given.
.
resistors      vertices
   |     R        |  edges
   2     1/2      2 [1,2]^2
   3     2/3      3 [1,2],[1,3],[2,3]
   4     3/4      4 [1,2],[1,4],[2,3],[3,4]
   5     6/7      4 [1,2]^2,[1,3],[2,4],[3,4]
   6    10/11     5 [1,2],[1,3],[1,4],[2,3],[3,5],[4,5]
   7    18/19     5 [1,2],[1,3]^2,[2,4],[3,4],[3,5],[4,5]
   8    34/35     6 [1,2],[1,3],[1,4],[2,5],[3,4],[3,5],[4,6],[5,6]
   9    55/56     6 [1,2]^2,[1,3],[2,4],[3,5],[3,6],[4,5],[4,6],[5,6]
  10   104/105    7 [1,4],[1,5],[2,4],[2,6],[2,7],[3,5],[3,6],[3,7],[4,6],[5,7]
  11   176/177    7 [1,4],[1,6],[2,4],[2,5],[2,7],[3,5],[3,6],[3,7],[4,6],[4,7],
                    [5,7]
  12   320/321    7 [1,4],[1,6],[2,4],[2,5],[2,6],[2,7],[3,4],[3,5],[3,6],[4,6],
                    [4,7],[5,7]
  13   609/610    8 [1,4],[1,5],[1,7],[2,5],[2,6],[2,7],[3,4],[3,6],[3,7],[4,5],
                    [4,6],[6,8],[7,8]
  14  1000/1001   8 [1,4],[1,5],[1,7],[2,4],[2,5],[2,6],[2,7],[3,5],[3,6],[3,7],
                    [4,5],[4,6],[4,8],[6,8]
  15  1892/1893   9 [1,4],[1,5],[2,5],[2,6],[2,7],[2,9],[3,6],[3,7],[3,8],[3,9],
                    [4,7],[4,8],[4,9],[5,8],[6,8]
  16  3185/3186   9 [1,2],[1,3],[2,6],[2,7],[2,9],[3,6],[3,7],[3,8],[4,5],[4,7],
                    [4,8],[5,6],[5,8],[5,9],[6,7],[8,9]
  17  5713/5714  10 [1,2],[1,3],[2,4],[2,5],[2,7],[3,4],[3,6],[3,10],[4,8],[5,6],
                    [5,7],[5,9],[6,8],[7,8],[7,9],[8,10],[9,10]
  18 10072/10073 10 [1,2],[1,3],[2,4],[2,5],[2,6],[3,4],[3,5],[3,10],[4,8],[5,7],
                    [5,9],[6,7],[6,8],[6,9],[7,8],[7,9],[8,10],[9,10]
  19 18505/18506 11 [1,2],[1,3],[2,5],[2,6],[2,7],[3,4],[3,5],[3,11],[4,6],[4,7],
                    [5,8],[5,10],[6,8],[6,9],[7,9],[7,10],[8,9],[9,11],[10,11]
		

Crossrefs

Cf. A279317, showing that maximum solutions using the square packing analogy can only be obtained for n <= 11 resistors.

Extensions

a(18) from Hugo Pfoertner, Apr 09 2021
a(19) from Fedor Karpelevitch, Aug 17 2025

A321028 a(n) = 6 + round(n^3) - (minimal number of squares in a dissection of an (n) X (n+1) oblong into squares).

Original entry on oeis.org

5, 4, 3, 3, 3, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Ed Pegg Jr, Oct 26 2018

Keywords

Comments

After a(18) = 2, all terms through a(387) are in (-1,0,1). The first known term outside of this range is a(969) >= 2.

Crossrefs

Formula

a(n) = 6 + A105209(n) - A279317(n).
Showing 1-2 of 2 results.