cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279328 Expansion of Product_{k>=1} (1 + x^(2*k)) / (1 - x^k).

Original entry on oeis.org

1, 1, 3, 4, 8, 11, 20, 27, 44, 60, 92, 124, 183, 244, 348, 461, 640, 840, 1144, 1488, 1992, 2572, 3393, 4348, 5668, 7212, 9301, 11760, 15024, 18880, 23924, 29892, 37596, 46728, 58376, 72193, 89644, 110340, 136248, 166968, 205115, 250316, 306056, 372032, 452876
Offset: 0

Views

Author

Seiichi Manyama, Dec 09 2016

Keywords

Examples

			G.f.: 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 11*x^5 + 20*x^6 + 27*x^7 + 44*x^8 + ...
		

Crossrefs

Cf. Product_{k>=1} (1 + x^(m*k)) / (1 - x^k): A015128 (m=1), this sequence (m=2), A266648 (m=3).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(2-irem(i, 2))*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k)) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 10 2016 *)

Formula

G.f.: Product_{k>=1} (1 + x^(2*k)) / (1 - x^k).
a(n) ~ sqrt(5/6) * exp(sqrt(5*n/6)*Pi) / (8*n). - Vaclav Kotesovec, Dec 10 2016