cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279341 a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).

Original entry on oeis.org

0, 1, 3, 7, 2, 6, 15, 5, 14, 13, 31, 4, 12, 30, 11, 29, 10, 27, 63, 28, 26, 9, 25, 62, 61, 23, 8, 24, 60, 22, 59, 21, 58, 55, 127, 20, 54, 57, 53, 126, 19, 51, 56, 52, 18, 125, 123, 50, 47, 17, 124, 122, 49, 121, 46, 45, 119, 16, 48, 120, 44, 118, 43, 117, 42, 111, 255, 116, 110, 41, 109, 254, 115, 107, 40, 108, 114, 253, 39, 106, 103
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A279342.
Related or similar permutations: A054429, A243071, A279338, A279343, A279347.

Programs

Formula

a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).
As a composition of other permutations:
a(n) = A054429(A279343(n)).
a(n) = A279343(A279347(n)).
a(n) = A243071(A279338(n)).
Other identities. For all n >= 1:
A000120(a(n)) = A279345(n).
For all n >= 2, A070939(a(n)) = A256993(n).

A279343 a(1) = 0, and for n > 1, if A079559(n) = 0, a(n) = 1 + 2*a(A256992(n)), otherwise a(n) = 2*a(A256992(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 5, 8, 6, 9, 10, 16, 7, 11, 17, 12, 18, 13, 20, 32, 19, 21, 14, 22, 33, 34, 24, 15, 23, 35, 25, 36, 26, 37, 40, 64, 27, 41, 38, 42, 65, 28, 44, 39, 43, 29, 66, 68, 45, 48, 30, 67, 69, 46, 70, 49, 50, 72, 31, 47, 71, 51, 73, 52, 74, 53, 80, 128, 75, 81, 54, 82, 129, 76, 84, 55, 83, 77, 130, 56, 85, 88, 78, 131, 57, 86
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A279344.
Related or similar permutations: A054429, A156552, A279338, A279341, A279347.

Programs

Formula

a(1) = 0, and for n > 1, if A079559(n) = 0 [when n is a term of A055938], a(n) = 1 + 2*a(A256992(n)), otherwise a(n) = 2*a(A256992(n)).
As a composition of other permutations:
a(n) = A054429(A279341(n)).
a(n) = A279341(A279347(n)).
a(n) = A156552(A279338(n)).
Other identities. For all n >= 1:
A000120(a(n)) = A279346(n).
For all n >= 2, A070939(a(n)) = A256993(n).

A279342 a(0) = 1, a(1) = 2, a(2n) = A055938(a(n)), a(2n+1) = A005187(a(n)).

Original entry on oeis.org

1, 2, 5, 3, 12, 8, 6, 4, 27, 22, 17, 15, 13, 10, 9, 7, 58, 50, 45, 41, 36, 32, 30, 26, 28, 23, 21, 18, 20, 16, 14, 11, 121, 112, 103, 97, 92, 86, 84, 79, 75, 70, 65, 63, 61, 56, 55, 49, 59, 53, 48, 42, 44, 39, 37, 34, 43, 38, 33, 31, 29, 25, 24, 19, 248, 237, 227, 221, 210, 201, 196, 191, 187, 180, 175, 168, 171, 165, 160, 153, 154, 146, 141
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A055938(n), and each right hand child as A005187(n), when the parent node contains n:
1
|
...................2...................
5 3
12......../ \........8 6......../ \........4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
27 22 17 15 13 10 9 7
58 50 45 41 36 32 30 26 28 23 21 18 20 16 14 11
etc.

Crossrefs

Inverse: A279341.
Right edge: A256994.
Related or similar permutations: A054429, A163511, A233278, A256997, A279339, A279344, A279347.

Programs

Formula

a(0) = 1, a(1) = 2, and then after, a(2n) = A055938(a(n)), a(2n+1) = A005187(a(n)).
As a composition of other permutations:
a(n) = A279344(A054429(n)).
a(n) = A279347(A279344(n)).
a(n) = A279339(A163511(n)).

A279344 a(0) = 1, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 8, 12, 7, 9, 10, 13, 15, 17, 22, 27, 11, 14, 16, 20, 18, 21, 23, 28, 26, 30, 32, 36, 41, 45, 50, 58, 19, 24, 25, 29, 31, 33, 38, 43, 34, 37, 39, 44, 42, 48, 53, 59, 49, 55, 56, 61, 63, 65, 70, 75, 79, 84, 86, 92, 97, 103, 112, 121, 35, 40, 46, 51, 47, 52, 54, 60, 57, 62, 64, 68, 73, 77, 82, 90, 66, 69, 71, 76, 74, 80
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A005187(n), and each right hand child as A055938(n), when the parent node contains n:
1
|
...................2...................
3 5
4......../ \........6 8......../ \........12
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 9 10 13 15 17 22 27
11 14 16 20 18 21 23 28 26 30 32 36 41 45 50 58
etc.

Crossrefs

Inverse: A279343.
Left edge: A256994.
Related or similar permutations: A005940, A054429, A233276, A256997, A279339, A279342, A279347.

Programs

Formula

a(0) = 1, after which, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).
As a composition of other permutations:
a(n) = A279342(A054429(n)).
a(n) = A279347(A279342(n)).
a(n) = A279339(A005940(1+n)).

A279345 a(n) = A000120(A279341(n)).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 4, 2, 3, 3, 5, 1, 2, 4, 3, 4, 2, 4, 6, 3, 3, 2, 3, 5, 5, 4, 1, 2, 4, 3, 5, 3, 4, 5, 7, 2, 4, 4, 4, 6, 3, 4, 3, 3, 2, 6, 6, 3, 5, 2, 5, 5, 3, 5, 4, 4, 6, 1, 2, 4, 3, 5, 4, 5, 3, 6, 8, 4, 5, 3, 5, 7, 5, 5, 2, 4, 4, 7, 4, 4, 5, 4, 6, 3, 4, 3, 4, 7, 7, 3, 3, 2, 6, 4, 6, 6, 3, 6, 3, 5, 6, 4, 2, 6, 5, 5, 5, 3, 5, 7, 5, 2, 3, 4, 4, 5, 4, 6, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A000120(A279341(n)).
a(n) = A279346(A279347(n)).
For all n >= 2, a(n) = 1+A080791(A279343(n)).
For all n >= 2, a(n) + A279346(n) - 1 = A256993(n).

A279346 a(n) = A000120(A279343(n)).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 2, 1, 3, 3, 3, 3, 2, 2, 2, 4, 4, 3, 3, 2, 3, 3, 2, 1, 4, 3, 3, 3, 2, 3, 3, 4, 4, 4, 2, 2, 4, 2, 4, 3, 3, 4, 3, 3, 3, 2, 5, 5, 4, 4, 3, 3, 3, 4, 2, 1, 4, 3, 4, 3, 2, 3, 3, 5, 4, 4, 2, 3, 4, 3, 4, 3, 4, 4, 4, 4, 2, 2, 5, 5, 5, 3, 4, 2, 3, 4, 3, 5, 3, 3, 4, 5, 3, 3, 4, 4, 5, 3, 2, 4, 5, 5, 4, 4, 4, 4, 3, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A000120(A279343(n)).
a(n) = A279345(A279347(n)).
For all n >= 2, a(n) = 1+A080791(A279341(n)).
For all n >= 2, a(n) + A279345(n) - 1 = A256993(n).
Showing 1-6 of 6 results.