cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279374 Number of ways to choose an odd partition of each part of an odd partition of 2n+1.

Original entry on oeis.org

1, 3, 6, 15, 37, 80, 183, 428, 893, 1944, 4223, 8691, 18128, 37529, 75738, 153460, 308829, 612006, 1211097, 2386016, 4648229, 9042678, 17528035, 33645928, 64508161, 123178953, 233709589, 442583046, 834923483, 1567271495, 2935406996, 5481361193, 10191781534
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2016

Keywords

Comments

An odd partition is an integer partition of an odd number with an odd number of parts, all of which are odd.

Examples

			The a(3)=15 ways to choose an odd partition of each part of an odd partition of 7 are:
((7)), ((511)), ((331)), ((31111)), ((1111111)), ((5)(1)(1)), ((311)(1)(1)),
((11111)(1)(1)), ((3)(3)(1)), ((3)(111)(1)), ((111)(3)(1)), ((111)(111)(1)),
((3)(1)(1)(1)(1)), ((111)(1)(1)(1)(1)), ((1)(1)(1)(1)(1)(1)(1)).
		

Crossrefs

Cf. A000009 (strict partitions), A078408 (odd partitions), A063834, A271619, A279375.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          [0, 2, 0, 1$4, 2, 0, 2, 1$4, 0, 2][1+irem(d, 16)],
          d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i, t) option remember;
          `if`(n=0, t, `if`(i<1, 0, b(n, i-2, t)+
          `if`(i>n, 0, b(n-i, i, 1-t)*g((i-1)/2))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 12 2016
  • Mathematica
    nn=20;Table[SeriesCoefficient[Product[1/(1-PartitionsQ[k]x^k),{k,1,2n-1,2}],{x,0,2n-1}],{n,nn}]