A279385 Irregular triangle read by rows in which row n lists the numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n), or row n is 0 if no such k exists.
1, 2, 3, 4, 5, 0, 6, 7, 8, 9, 10, 11, 0, 12, 13, 14, 0, 15, 16, 17, 18, 19, 0, 20, 21, 22, 23, 0, 24, 25, 26, 27, 0, 28, 29, 0, 30, 31, 32, 33, 34, 0, 35, 36, 37, 38, 39, 0, 40, 41, 0, 42, 43, 44, 0, 45, 46, 47, 0, 48, 49, 50, 51, 52, 53, 0, 54, 55, 0, 56, 57, 58, 59, 0, 60, 61, 62, 0, 63, 64, 65, 0, 66, 67, 68, 69, 0
Offset: 1
Examples
n Triangle begins: 1 1; 2 2, 3; 3 4, 5; 4 0; 5 6, 7; 6 8, 7 9, 10, 11; 8 0; 9 12, 13, 14; 10 0; 11 15; 12 16, 17; 13 18, 19; 14 0; 15 20, 21, 22, 23; 16 0; ...
Crossrefs
Programs
-
Mathematica
(* last computed value is dropped to avoid a potential under count of crossings *) a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}] pathGroups[n_] := Module[{t}, t=Table[{}, a240542[n]]; Map[AppendTo[t[[a240542[#]]], #]&, Range[n]]; Map[If[t[[#]]=={}, t[[#]]={0}]&, Range[Length[t]]]; Most[t]] a279385[n_] := Flatten[pathGroups[n]] a279385[70] (* sequence *) a279385T[n_] := TableForm[pathGroups[n], TableHeadings->{Range[a240542[n]-1], None}] a279385T[24] (* display of irregular triangle - Hartmut F. W. Hoft, Feb 02 2022 *)
Extensions
More terms from Omar E. Pol, Jun 20 2018
Comments