A278720 The p-defect p - N(p) of the congruence y^2 == x^3 + 4*x (mod p) for primes p, where N(p) is the number of solutions given by A276730.
0, 0, -2, 0, 0, 6, 2, 0, 0, -10, 0, -2, 10, 0, 0, 14, 0, -10, 0, 0, -6, 0, 0, 10, 18, -2, 0, 0, 6, -14, 0, 0, -22, 0, 14, 0, 22, 0, 0, -26, 0, -18, 0, -14, -2, 0, 0, 0, 0, 30, 26, 0, -30, 0, 2, 0, -26, 0, -18, 10, 0, -34, 0, 0, 26, 22, 0, 18, 0, -10, 34, 0, 0, 14, 0, 0, -34, 38, 2, -6, 0, 30, 0, 34, 0, 0, -14, 42, 38, 0, 0, 0, 0, 0, 0, 0, -10, -22, 0, -42
Offset: 1
Examples
a(1) = 0 because prime(1) = 2 == 2 (mod 4). a(2) = 0 because prime(2) = 3 == 3 (mod 4). a(3) = -2 because prime(3) = 5 = A002144(1) = A002972(1)^2 + (2*A002973(1))^2 = 1^2 + 2^2. Hence 2*A(1) = 2*A002972(1) = 2, and the sign s(1) = - because A(1) + B(1) = 1 + 2*1 = 3 == 3 (mod 4). a(6) = +6 because prime(6) = 13 = A002144(2) = A(2)^2 + B(2)^2 = 3^2 + (2*1)^2. Hence 2*A(2) = 6 and the sign is + because A(2) + B(2) = 3 + 2 = 5 == 1 (mod 4).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- George E. Andrews, Number Theory, see S(1) expression p. 135.
- J. E. Cremona, Algorithms for Modular Elliptic Curves.
- Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Programs
-
PARI
a(n) = my(p=prime(n)); -sum(k=1, p-3, kronecker(k*(k+1)*(k+2), p)); \\ Michel Marcus, Nov 06 2020
Formula
a(n) = 0 if prime(n) == 2 or 3 (mod 4) (this is conjecture II from above).
a(n) = s(m)*2*A(m) if prime(n) = A002144(m), with A(m) = A002972(m) and the sign s(m) = (-1)^((A(m)-1)/2 + B(m)/2).
a(n) = - Sum_{k=1..p-3} ((k*(k+1)*(k+2))/p) where (x/y) is the Kronecker symbol. - Michel Marcus, Nov 06 2020
Comments