cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279395 a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^4.

Original entry on oeis.org

1, 15, 82, 271, 626, 1230, 2402, 4367, 6643, 9390, 14642, 22222, 28562, 36030, 51332, 69903, 83522, 99645, 130322, 169646, 196964, 219630, 279842, 358094, 391251, 428430, 538084, 650942, 707282, 769980, 923522, 1118479, 1200644, 1252830, 1503652, 1800253, 1874162, 1954830, 2342084, 2733742
Offset: 1

Views

Author

Wolfdieter Lang, Jan 09 2017

Keywords

Comments

This is the k=4 member of the family sigma^*_k(n), defined in the Hardy reference, which is sigma_k(2*j+1) if n = 2*j+1 and sigma_k^e(2*j) - sigma_k^o(2*j) if n=2*j, where the superscript e and o stands for a restriction to even and odd divisors in the sum of their k-th powers, respectively.

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Cf. A112329 (k=0), A113184 (k=1), A064027 (k=2), A008457(k=3).

Programs

  • Magma
    [&+[(-1)^(n-d)*d^4:d in Divisors(n)]:n in [1..40]]; // Marius A. Burtea, Aug 17 2019
  • Maple
    # A version with signs - N. J. A. Sloane, Nov 23 2018
    zet1:=(n,i)->add((-1)^(d-1)*d^i, d in divisors(n));
    szet1:=i->[seq(zet1(n,i),n=1..120)];
    szet1(4);
  • Mathematica
    f[p_, e_] := If[p == 2, (2^(4*(e + 1)) - 31)/15, (p^(4*(e + 1)) - 1)/(p^4 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 40] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n-d)*d^4); \\ Michel Marcus, Jan 09 2017
    

Formula

a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^4.
Bisection: a(2*j-1) = A001159(2*j-1), a(2*j) = 16*A001159(j) - A051001(j), j >= 1. See the comment above for k=4, and the Hardy reference.
G.f.: Sum_{k>=1} k^4*x^k/(1-(-x)^k).
Multiplicative with a(2^k) = 2^4*(2^(4*k)-1)/(2^4-1) - 1 = (2^(4*(k+1)) - 31)/15 and a(p^k) = (p^(4*(k+1))-1)/(p^4-1) for primes p > 2 (see A001159).