A279563 Number of length n inversion sequences avoiding the patterns 102, 201, and 210.
1, 1, 2, 6, 22, 85, 328, 1253, 4754, 17994, 68158, 258808, 985906, 3768466, 14451386, 55585014, 214377618, 828795169, 3211030684, 12464308997, 48465092366, 188733879657, 735977084412, 2873525548315, 11231884145434, 43947466923095, 172115939825516
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1664
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, n!, ((2*(12*n^3-91*n^2+213*n-149))*a(n-1) -(3*(21*n^3-162*n^2+392*n-291))*a(n-2) +(2*(33*n^3-257*n^2+633*n-484))*a(n-3) -(4*(2*n-7))*(3*n^2-13*n+13)*a(n-4)) / ((n-1)*(3*n^2-19*n+29))) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 22 2017
-
Mathematica
a[n_] := a[n] = If[n < 4, n!, ((2*(12*n^3 - 91*n^2 + 213*n - 149))*a[n-1] - (3*(21*n^3 - 162*n^2 + 392*n - 291))*a[n-2] + (2*(33*n^3 - 257*n^2 + 633*n - 484))*a[n-3] - (4*(2*n - 7))*(3*n^2 - 13*n + 13)*a[n-4]) / ((n - 1)*(3*n^2 - 19*n + 29))]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
Formula
a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2021
G.f.: (2 - 15*x + 32*x^2 - 16*x^3 + x * (1 - 2*x) * (1 + 2*x) * (1 - 4*x)^(1/2)) / (2 * (1 - x)^2 * (1 - 2*x) * (1 - 4*x)). - Nathan J. Britt, Jun 08 2025
Extensions
a(10)-a(26) from Alois P. Heinz, Feb 22 2017
Comments