cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279563 Number of length n inversion sequences avoiding the patterns 102, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 85, 328, 1253, 4754, 17994, 68158, 258808, 985906, 3768466, 14451386, 55585014, 214377618, 828795169, 3211030684, 12464308997, 48465092366, 188733879657, 735977084412, 2873525548315, 11231884145434, 43947466923095, 172115939825516
Offset: 0

Views

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 102, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n!,
          ((2*(12*n^3-91*n^2+213*n-149))*a(n-1)
          -(3*(21*n^3-162*n^2+392*n-291))*a(n-2)
          +(2*(33*n^3-257*n^2+633*n-484))*a(n-3)
          -(4*(2*n-7))*(3*n^2-13*n+13)*a(n-4))
           / ((n-1)*(3*n^2-19*n+29)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a[n_] := a[n] = If[n < 4, n!, ((2*(12*n^3 - 91*n^2 + 213*n - 149))*a[n-1] - (3*(21*n^3 - 162*n^2 + 392*n - 291))*a[n-2] + (2*(33*n^3 - 257*n^2 + 633*n - 484))*a[n-3] - (4*(2*n - 7))*(3*n^2 - 13*n + 13)*a[n-4]) / ((n - 1)*(3*n^2 - 19*n + 29))]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2021
G.f.: (2 - 15*x + 32*x^2 - 16*x^3 + x * (1 - 2*x) * (1 + 2*x) * (1 - 4*x)^(1/2)) / (2 * (1 - x)^2 * (1 - 2*x) * (1 - 4*x)). - Nathan J. Britt, Jun 08 2025

Extensions

a(10)-a(26) from Alois P. Heinz, Feb 22 2017