cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Megan A. Martinez

Megan A. Martinez's wiki page.

Megan A. Martinez has authored 24 sequences. Here are the ten most recent ones:

A279572 Number of length n inversion sequences avoiding the patterns 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 23, 101, 484, 2468, 13166, 72630, 411076, 2374188, 13938018, 82932254, 499031324, 3031610924, 18568429963, 114541486785, 710973143614, 4437415155234, 27831038618735, 175318861863701, 1108762012137252, 7037137177329268, 44808588430903068
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 120, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Extensions

a(12)-a(15) from Bert Dobbelaere, Dec 30 2018
a(16)-a(24) from Toufik Mansour et al. added by Stefano Spezia, Jan 20 2024

A279568 Number of length n inversion sequences avoiding the patterns 110, 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 396, 1833, 8801, 43441, 219092, 1124201, 5850414, 30805498, 163824559, 878655117, 4747341879, 25815026491, 141173582016, 775920816789, 4283833709457, 23746640019657, 132116647765569, 737485227605338, 4129174120158569, 23183379592361839
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, 201, and 210.
It was shown that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 120, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (100, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Programs

  • Maple
    b:= proc(n, i, l) option remember; `if`(n=0, 1, add((h->
          b(n-1, i-h+2, j-h+1))(max(1, `if`(j=l, 0, l))), j=1..i))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 23 2017
  • Mathematica
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, 1, Sum[b[n-1, i-#+2, j-#+1]& @ Max[1, If[j == l, 0, l]], {j, 1, i}]]; a[n_] :=  b[n, 1, 1];  Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 5.98041772076926677236919875200507... is the positive root of the equation -32 - 195*d - 12*d^2 - 112*d^3 + 20*d^4 = 0 and c = 0.1056946795054351807407212356928404107733262398133039312067247126343... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 23 2017

A279571 Number of length n inversion sequences avoiding the patterns 100, 101, and 201.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 424, 2106, 11102, 61436, 353980, 2110366, 12955020, 81569168, 525106698, 3447244188, 23028080268, 156246994264, 1075127143948, 7492458675666, 52820934349420, 376331681648402, 2707312468516446, 19650530699752470, 143807774782994412, 1060472244838174574, 7875713244761349666, 58876660310205135380, 442862775457168812898, 3350397169412102710198
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 100, 101, and 201.

Examples

			The length 4 inversion sequences avoiding (100,101,201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0102, 0103, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Programs

  • Maple
    b:= proc(n, i, s, m) option remember;
          `if`(n=0, 1, add(b(n-1, i+1, s minus {$j..m-
          `if`(j=m, 1, 0)} union {i+1}, max(m, j)), j=s))
        end:
    a:= n-> b(n, 1, {1}, 0):
    seq(a(n), n=0..15);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    b[n_, i_, s_, m_] := b[n, i, s, m] = If[n == 0, 1, Sum[b[n-1, i+1, s  ~Complement~ Range[j, m - If[j == m, 1, 0]] ~Union~ {i+1}, Max[m, j]], {j, s}]];
    a[n_] := b[n, 1, {1}, 0];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 22 2017
a(26)-a(29) from Vaclav Kotesovec, Oct 07 2021

A279573 Number of length n inversion sequences avoiding the patterns 120 and 210.

Original entry on oeis.org

1, 1, 2, 6, 23, 102, 499, 2625, 14601, 84847, 510614, 3161964, 20050770, 129718404, 853689031, 5701759424, 38574689104, 263936457042, 1824032887177, 12718193293888, 89386742081688, 632746535420834, 4508140253686638, 32308561883462867, 232790342330880572
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j > e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 120 and 210.

Examples

			The length 4 inversion sequences avoiding (120,210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Formula

a(n) ~ c * 8^n / n^(3/2), where c = 0.0013548789253263217919... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(24) from Alois P. Heinz, Feb 21 2017

A279570 Number of length n inversion sequences avoiding the patterns 110 and 120.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 423, 2091, 10950, 60120, 343453, 2029809, 12354661, 77168197, 493189283, 3217459119, 21382723456, 144518555231, 991885282987, 6904454991721, 48691257834999, 347542736059492, 2508603139285095, 18297609829743478, 134772911886028731
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110 and 120.

Examples

			The length 4 inversion sequences avoiding (110,120) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
		

Extensions

a(10)-a(24) from Alois P. Heinz, Feb 21 2017

A279569 Number of length n inversion sequences avoiding the patterns 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 409, 1953, 9763, 50583, 269697, 1472080, 8193306, 46359256, 266023710, 1545165168, 9070274236, 53739936609, 321025143482, 1931764542709, 11700651842997, 71288958790413, 436662467207291, 2687623420862395, 16615163817647042, 103131646740020637
Offset: 0

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, and 210.
It was shown that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j >= e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 120, and 210.

Examples

			The length 4 inversion sequences avoiding (110, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (100, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, i-min(t, j)+2, abs(t-j)+1), j=1..i))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 21 2017
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, i - Min[t, j] + 2, Abs[t-j]+1], {j, 1, i}]]; a[n_] :=  b[n, 1, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * (27/4)^n / n^(3/2), where c = 0.0111684107126703379786799829348... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 21 2017

A279567 Number of length n inversion sequences avoiding the patterns 100, 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 82, 343, 1509, 6893, 32419, 156058, 765578, 3815062, 19263736, 98368919, 507197436, 2637242188, 13814247530, 72834238423, 386244387688, 2058933104170, 11026807340592, 59304897232442, 320181600386661, 1734685419170666, 9428340999504441
Offset: 0

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 110, 120, and 210.

Examples

			The length 4 inversion sequences avoiding (100, 110, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
		

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, 1, add((h->
          b(n-1, i-h+1, max(m, j)-h))(max(0, min(m-1, j))), j=1..i))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 23 2017
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[b[n-1, i-#+1, Max[m, j]-#]& @ Max[0, Min[m-1, j]], {j, 1, i}]]; a[n_] := b[n, 1, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * (1 + sqrt(2))^(2*n) / n^(3/2), where c = 0.066085708825649431003670013119332303648755519420440375... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 23 2017

A279566 Number of length n inversion sequences avoiding the patterns 102 and 201.

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 354, 1465, 6154, 26223, 113236, 494870, 2185700, 9743281, 43784838, 198156234, 902374498, 4131895035, 19012201080, 87864535600, 407664831856, 1898184887679, 8867042353912, 41543375724751, 195164372948152, 919138464708907, 4338701289961694, 20524046955770940
Offset: 0

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j < e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 102 and 201.

Examples

			The length 4 inversion sequences avoiding (102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123
		

Formula

G.f.: (-8*x^4 + 18*x^3 - 10*x^2 - 8*x + 4 + 2 * (2*x - 1) * (x^2 - 2*x + 2) * ((5*x - 1)*(x - 1))^(1/2)) / (4*x * (2*x - 1) * (x - 1) * (x - 2)^2). - Benjamin Testart, Jul 12 2024
a(n) ~ 41 * 5^(n + 3/2) / (648 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2024

Extensions

a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(17) from Bert Dobbelaere, Dec 30 2018
a(18) and beyond from Benjamin Testart, Jul 12 2024

A279565 Number of length n inversion sequences avoiding the patterns 100, 110, 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 81, 332, 1420, 6266, 28318, 130412, 609808, 2887582, 13818590, 66726628, 324713196, 1590853485, 7840315329, 38843186366, 193342353214, 966409013021, 4848846341569, 24412146213116, 123290812268404, 624448756434476, 3171046361310556
Offset: 0

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k. This is the same as the set of length n inversion sequences avoiding 100, 110, 120, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (100, 110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
		

Programs

  • Magma
    I:=[6, 21, 81]; [1,1,2] cat [n le 3 select I[n] else ( (n+1)*(17*n+6)*Self(n-1) +(49*n^2+11*n+22)*Self(n-2) +3*(3*n-1)*(3*n-2)*Self(n-3) )/(5*(n+2)*(n+1)) : n in [1..30]]; // G. C. Greubel, Mar 29 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, n!,
          ((n-1)*(17*n-28)*a(n-1) +(49*n^2-185*n+196)*a(n-2)
           +(3*(3*n-7))*(3*n-8)*a(n-3)) / (5*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a[n_] := a[n] = If[n < 3, n!, (((n - 1)*(17*n - 28)*a[n-1] + (49*n^2 - 185*n + 196)*a[n-2] + (3*(3*n - 7))*(3*n - 8)*a[n-3]) / (5*n*(n - 1)))]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
    Join[{1}, Table[(1/n)*Sum[m*Sum[Binomial[k, n-m-k]*Binomial[n+k-1, k], {k, 0, n-m}], {m, 1, n}], {n, 1, 30}]] (* G. C. Greubel, Mar 29 2019 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(m*sum(binomial(k,n-m-k)*binomial(n+k-1,k),k,0,n-m),m,1,n)/n; /* Vladimir Kruchinin, Mar 26 2019 */
    
  • PARI
    my(x='x+O('x^30)); Vec(round(3/(4-4*sin(asin((27*x+11)/16)/3)))) \\ G. C. Greubel, Mar 29 2019
    
  • Sage
    [1] +[(1/n)*(sum(sum(k*binomial(j,n-k-j)*binomial(n+j-1,j) for j in (0..n-k)) for k in (1..n))) for n in (1..30)] # G. C. Greubel, Mar 29 2019

Formula

G.f.: 3/(4-4*sin(asin((27*x+11)/16)/3)). - Vladimir Kruchinin, Mar 25 2019
a(n) = (1/n)*Sum_{m=1..n} m*Sum_{k=0..n-m} C(k,n-m-k)*C(n+k-1,k), n>0, a(0)=1. - Vladimir Kruchinin, Mar 26 2019
a(n) ~ 3^(3*n + 1/2) / (2^(7/2) * sqrt(Pi) * n^(3/2) * 5^(n - 1/2)). - Vaclav Kotesovec, Oct 07 2021
Conjecture: a(n) = (v_n + v_{n+1})/2 for n > 0 with a(0) = 1 where we start with vector v of fixed length m with elements v_i = 1 and for i=1..m-2, for j=i+2..m apply v_j := Sum_{k=0..2} v_{j-k}. - Mikhail Kurkov, Sep 03 2024

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 22 2017

A279564 Number of length n inversion sequences avoiding the patterns 000 and 100.

Original entry on oeis.org

1, 1, 2, 5, 16, 60, 260, 1267, 6850, 40572, 260812, 1805646, 13377274, 105487540, 881338060, 7770957903, 72060991394, 700653026744, 7123871583656, 75561097962918, 834285471737784, 9570207406738352, 113855103776348136, 1402523725268921870, 17863056512845724036, 234910502414771617316, 3185732802058088068444, 44501675392317774477088
Offset: 0

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_j = e_k. This is the same as the set of length n inversion sequences avoiding 000 and 100.

Programs

  • Maple
    b:= proc(n, i, m, s) option remember; `if`(n=0, 1, add(
          `if`(j in s, 0, b(n-1, i+1, max(m, j),
          `if`(j<=m, s union {j}, s))), j=1..i))
        end:
    a:= n-> b(n, 1, 0, {}):
    seq(a(n), n=0..15);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    b[n_, i_, m_, s_List] := b[n, i, m, s] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, b[n-1, i+1, Max[m, j], If[j <= m, s ~Union~ {j}, s]]], {j, 1, i}] ]; a[n_] := b[n, 1, 0, {}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

The length 4 inversion sequences avoiding (000,100) are 0011, 0012, 0013, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0112, 0113, 0120, 0121, 0122, 0123.

Extensions

a(10)-a(23) from Alois P. Heinz, Feb 22 2017
a(24)-a(27) from Vaclav Kotesovec, Oct 08 2021