A279564 Number of length n inversion sequences avoiding the patterns 000 and 100.
1, 1, 2, 5, 16, 60, 260, 1267, 6850, 40572, 260812, 1805646, 13377274, 105487540, 881338060, 7770957903, 72060991394, 700653026744, 7123871583656, 75561097962918, 834285471737784, 9570207406738352, 113855103776348136, 1402523725268921870, 17863056512845724036, 234910502414771617316, 3185732802058088068444, 44501675392317774477088
Offset: 0
Keywords
Links
- Benjamin Testart, Table of n, a(n) for n = 0..540
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, s) option remember; `if`(n=0, 1, add( `if`(j in s, 0, b(n-1, i+1, max(m, j), `if`(j<=m, s union {j}, s))), j=1..i)) end: a:= n-> b(n, 1, 0, {}): seq(a(n), n=0..15); # Alois P. Heinz, Feb 22 2017
-
Mathematica
b[n_, i_, m_, s_List] := b[n, i, m, s] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, b[n-1, i+1, Max[m, j], If[j <= m, s ~Union~ {j}, s]]], {j, 1, i}] ]; a[n_] := b[n, 1, 0, {}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Formula
The length 4 inversion sequences avoiding (000,100) are 0011, 0012, 0013, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0112, 0113, 0120, 0121, 0122, 0123.
Extensions
a(10)-a(23) from Alois P. Heinz, Feb 22 2017
a(24)-a(27) from Vaclav Kotesovec, Oct 08 2021
Comments