cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279566 Number of length n inversion sequences avoiding the patterns 102 and 201.

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 354, 1465, 6154, 26223, 113236, 494870, 2185700, 9743281, 43784838, 198156234, 902374498, 4131895035, 19012201080, 87864535600, 407664831856, 1898184887679, 8867042353912, 41543375724751, 195164372948152, 919138464708907, 4338701289961694, 20524046955770940
Offset: 0

Views

Author

Megan A. Martinez, Feb 09 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j < e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 102 and 201.

Examples

			The length 4 inversion sequences avoiding (102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123
		

Crossrefs

Formula

G.f.: (-8*x^4 + 18*x^3 - 10*x^2 - 8*x + 4 + 2 * (2*x - 1) * (x^2 - 2*x + 2) * ((5*x - 1)*(x - 1))^(1/2)) / (4*x * (2*x - 1) * (x - 1) * (x - 2)^2). - Benjamin Testart, Jul 12 2024
a(n) ~ 41 * 5^(n + 3/2) / (648 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2024

Extensions

a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(17) from Bert Dobbelaere, Dec 30 2018
a(18) and beyond from Benjamin Testart, Jul 12 2024