A279566 Number of length n inversion sequences avoiding the patterns 102 and 201.
1, 1, 2, 6, 22, 87, 354, 1465, 6154, 26223, 113236, 494870, 2185700, 9743281, 43784838, 198156234, 902374498, 4131895035, 19012201080, 87864535600, 407664831856, 1898184887679, 8867042353912, 41543375724751, 195164372948152, 919138464708907, 4338701289961694, 20524046955770940
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123
Links
- Benjamin Testart, Table of n, a(n) for n = 0..1400
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Formula
G.f.: (-8*x^4 + 18*x^3 - 10*x^2 - 8*x + 4 + 2 * (2*x - 1) * (x^2 - 2*x + 2) * ((5*x - 1)*(x - 1))^(1/2)) / (4*x * (2*x - 1) * (x - 1) * (x - 2)^2). - Benjamin Testart, Jul 12 2024
a(n) ~ 41 * 5^(n + 3/2) / (648 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2024
Extensions
a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(17) from Bert Dobbelaere, Dec 30 2018
a(18) and beyond from Benjamin Testart, Jul 12 2024
Comments