A279568 Number of length n inversion sequences avoiding the patterns 110, 120, 201, and 210.
1, 1, 2, 6, 22, 90, 396, 1833, 8801, 43441, 219092, 1124201, 5850414, 30805498, 163824559, 878655117, 4747341879, 25815026491, 141173582016, 775920816789, 4283833709457, 23746640019657, 132116647765569, 737485227605338, 4129174120158569, 23183379592361839
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123. The length 4 inversion sequences avoiding (100, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1294
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Crossrefs
Programs
-
Maple
b:= proc(n, i, l) option remember; `if`(n=0, 1, add((h-> b(n-1, i-h+2, j-h+1))(max(1, `if`(j=l, 0, l))), j=1..i)) end: a:= n-> b(n, 1$2): seq(a(n), n=0..30); # Alois P. Heinz, Feb 23 2017
-
Mathematica
b[n_, i_, l_] := b[n, i, l] = If[n == 0, 1, Sum[b[n-1, i-#+2, j-#+1]& @ Max[1, If[j == l, 0, l]], {j, 1, i}]]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 5.98041772076926677236919875200507... is the positive root of the equation -32 - 195*d - 12*d^2 - 112*d^3 + 20*d^4 = 0 and c = 0.1056946795054351807407212356928404107733262398133039312067247126343... - Vaclav Kotesovec, Oct 07 2021
Extensions
a(10)-a(25) from Alois P. Heinz, Feb 23 2017
Comments