A279569 Number of length n inversion sequences avoiding the patterns 110, 120, and 210.
1, 1, 2, 6, 22, 91, 409, 1953, 9763, 50583, 269697, 1472080, 8193306, 46359256, 266023710, 1545165168, 9070274236, 53739936609, 321025143482, 1931764542709, 11700651842997, 71288958790413, 436662467207291, 2687623420862395, 16615163817647042, 103131646740020637
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (110, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123. The length 4 inversion sequences avoiding (100, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, add(b(n-1, i-min(t, j)+2, abs(t-j)+1), j=1..i)) end: a:= n-> b(n, 1$2): seq(a(n), n=0..30); # Alois P. Heinz, Feb 21 2017
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, i - Min[t, j] + 2, Abs[t-j]+1], {j, 1, i}]]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * (27/4)^n / n^(3/2), where c = 0.0111684107126703379786799829348... - Vaclav Kotesovec, Oct 07 2021
Extensions
a(10)-a(25) from Alois P. Heinz, Feb 21 2017
Comments